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Introduction

Whether changes in climate substantially shape human conflict is a question of considerable recent

interest to both academics and policymakers. Despite a substantial body of evidence for a strong

association between climate and conflict,1 it remains widely claimed that large-sample empirical evi-

dence linking climatic conditions and modern human conflict in Africa is mixed and thus any reported

evidence for a strong association should be discounted. Theisen, Holterman, and Buhaug2 (henceforth

THB) is one of the studies used to support this claim. Here we show that the results in THB are not in-

consistent with earlier studies that report a substantial effect of of climate on conflict. We demonstrate

using power calculations and Monte Carlo simulations that even if a large association between climate

and conflict existed in the data, the approach of THB would not be able to reliably distinguish this

association from a null effect, indicating that the approach taken by THB is statistically underpowered

in this context. Therefore THB’s analysis provides no basis for discarding earlier analyses and THB’s

conclusions drawn from this analysis overstate the extent to which they disagree with the literature.3

We also demonstrate that THB’s stated advantage from using exceptionally high resolution data is

unlikely to be realized in their analysis, since high resolution rainfall data was not actually collected in

the majority conflict zones studied by THB. Although unremarked in the original analysis, the rainfall

data in THB are interpolations of sparse and incomplete rainfall measurements.

Consistency of THB with earlier findings

THB break up Africa into 10,671 0.5◦ × 0.5◦ pixels which they assign a measure of rainfall or water

availability and a measure of conflict for the years 1960-2004. They then regress the pixel-by-year mea-

sure of conflict on the measures of climate and evaluate whether the coefficient on their climate variable

is statistically significant. Because they find these coefficients are not significant, THB conclude that

“The results presented in this article demonstrate that there is no direct, short-term relationship be-

1Solomon M Hsiang, Marshall Burke, and Edward Miguel. “Quantifying the influence of climate on human conflict”.
Science 341.6151 (2013), p. 1235367; Solomon M Hsiang and Marshall Burke. “Climate, conflict, and social stability:
what does the evidence say?” Climatic Change 123.1 (2014), pp. 39–55; Marshall Burke, Solomon M Hsiang, and
Edward Miguel. “Climate and Conflict”. Annual Review of Economics 7 (2015), pp. 577–617.

2O.M Theisen, H Holtermann, and H Buhaug. “Climate wars? Assessing the claim that drought breeds conflict”.
International Security 36.3 (2012), pp. 79–106.

3Solomon M. Hsiang and Kyle C. Meng. “Reconciling disagreement over climate–conflict results in Africa.” Pro-
ceedings of the National Academy of Sciences 111.6 (2014), pp. 2100–2103; Solomon M. Hsiang, Marshall Burke, and
Edward Miguel. “Reconciling Temperature–conflict Results in Kenya”. CEGA working paper series (2013). url:
http://www.escholarship.org/uc/item/9ct8g2zr; Mark A Cane et al. “Temperature and violence”. Nature Climate
Change 4.4 (2014), pp. 234–235.
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tween drought and civil war onset,” (p. 105). However, the results presented in THB have such large

uncertainty that they are simultaneously consistent with both “no effect” of climate on conflict and

effects that are as large as or larger than statistically significant results reported in earlier studies.4

To illustrate why THB’s conclusion is inconsistent with their analysis, we replicate THB’s Figure

3, which examined the change in relative risk of conflict when moving from the 10th to 90th percentile

of their many different drought measures (Figure 1). But unlike THB, we plot the x-axis (relative risk)

without using a logarithmic scale, allowing us to more clearly observe the large confidence intervals

around their point estimates. As shown in Figure 1, parameter estimates for 19 out of 21 of their

drought variables are consistent with a 50% increase in conflict, an effect similar in magnitude to

results of other studies that report a link between climate and conflict.5 Moreover, 14 out of 21

estimates are consistent with a 100% increase of conflict risk, and only 1 out of 21 of their estimates

can reject a 10% increase in conflict. This wide range of estimates does not support THB’s claim

that the effect of climate on conflict is exactly zero. Had THB begun their analysis using the null

hypotheses that “drought increases conflict risk by 50%” – a logical null given previous findings6 –

they would have found that over 90% of their estimates were consistent with this hypothesis.

Sample size and statistical power of THB

The complete sample in THB contains 363,811 pixel-by-year observations, of which 59 are coded as

experiencing conflict (a binary variable) using a definition proposed by THB. Thus these conflicts

are extraordinarily rare events: the unconditional probability that any location exhibits conflict in a

randomly selected year is 59
363,811 = 0.00016 = 0.016%. Because the likelihood of conflict is so rare in

this sample (a 1 in 6,250 event), a large proportional change in the risk of conflict still constitutes a

very small change in the overall likelihood of conflict. If some variable caused the risk of conflict to

4Hsiang, Burke, and Miguel, “Reconciling Temperature–conflict Results in Kenya”; M.A Levy et al. “Freshwater
availability anomalies and outbreak of internal war: Results from a global spatial time series analysis”. international
workshop on ‘Human Security and Climate Change’, Holmen, Norway (2005). url: http://www.ciesin.columbia.

edu/pdf/waterconflict.pdf; E. Miguel, S. Satyanath, and E. Sergenti. “Economic Shocks and Civil Conflict: An
Instrumental Variables Approach”. J. Political Economy 112.4 (2004), pp. 725–753; E Miguel. “Poverty and witch
killing”. Review of Economic Studies 72.4 (2005), pp. 1153–1172; M.B. Burke et al. “Warming increases the risk of
civil war in Africa”. Proceedings of the National Academy of Sciences 106.49 (2009), p. 20670; S.M. Hsiang, K.C.
Meng, and M.A. Cane. “Civil conflicts are associated with the global climate”. Nature 476.7361 (2011), pp. 438–
441; Mariaflavia Harari and Eliana La Ferrara. “Conflict, Climate and Cells: A disaggregated analysis”. Working
paper (2011). url: http://www- 2.iies.su.se/Nobel2012/Papers/LaFerrara_Harari.pdf; C. S Hendrix and I
Salehyan. “Climate change, rainfall, and social conflict in Africa”. Journal of Peace Research 49.1 (2012), pp. 35–50.
doi: 10.1177/0022343311426165; H. Fjelde and N. von Uexkull. “Climate triggers: Rainfall anomalies, vulnerability
and communal conflict in sub-Saharan Africa”. Political Geography (2012); J O’Loughlin et al. “Climate variability and
conflict risk in East Africa, 1990–2009”. Proc. Natl. Acad. Sci. USA (2012).

5Hsiang, Burke, and Miguel, “Quantifying the influence of climate on human conflict”.
6Hsiang, Burke, and Miguel, “Quantifying the influence of climate on human conflict”.
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is the probability that the null is rejected when it is indeed false. To perform these calculations in the

simplest possible scenario, the analyst needs (1) an estimate of the baseline mean and variance of the

outcome of interest in the population of interest, (2) to set α and κ, and (3) to choose a minimum

effect size θ that must be distinguished from the null of “no effect.”

We choose the standard significance level α = 0.05 and κ = 0.8, a relatively generous tolerance

for Type II error. The standard κ = 0.9, would only further increase the necessary sample sizes. We

assume that there is no intraclass correlation in outcomes within a given grid-cell over time and assume

that 16.8% of grid-cell-years experience a drought – consistent with THB’s spi6dum variable. Baseline

conflict risk is kept fixed at the 0.016% used by THB.

Figure 2 shows the sample sizes that are needed to distinguish the null hypothesis that drought has

“no effect” (θ = 0) from hypotheses that the effect θ ranges in size from 10-600% above average levels

of conflict risk. THB’s sample size in their regressions (17,393 observations) is shown as a horizontal

line. We calculate that THB would need 51.4 million observations to detect or reject a 10% increase

in conflict, and they would need about 2 million observations to detect or reject a 50% increase in

conflict—an effect consistent with earlier studies. We estimate that given the level of noise in their

data and their 17,393 observations, the smallest effect of drought that THB could reliably reject is an

increase of roughly 550%, an effect well beyond the range of estimates proposed in previous studies.

Evaluating the method in THB with Monte Carlo simulations

As a final demonstration that the approach of THB does not provide insight into the presence or

absence of a relationship between climate and conflict, we generate synthetic data with the general

structure of the data used by THB, ensuring that in this data set conflict and climate are related

by construction. We then test whether the approach of THB can recover this fact. We repeat this

exercise many times and compute the likelihood that THB would have correctly rejected the null

hypothesis that climate and conflict are unrelated in favor of the hypothesis that these variables are

related—which we know is true in our synthetic data. Our procedure is as follows.

We generate 363,811 normally distributed rainfall observations with mean=0 and σ=1. The

precdev rainfall variable used by THB is similar to normal but has greater kurtosis, which makes

estimates noisier. This implies that our assumption of normal rainfall makes our approach relatively

more forgiving, in terms of signal detection, than that of THB7.

7The variable that THB prefer is a dummy variable spi6dum that is 1 under drought conditions, however it has even
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We then prescribe rainfall to exert an influence on the risk of conflict that is consistent with a

recent meta-analysis of this relationship:8 a 1σ increase in rainfall raises conflict risk 10%. We do this

by constructing synthetic observations of conflict risk, a latent variable that is not observed

conflict risk = 0.00016217× (1 + 0.1× rainfall) + ε (1)

where the mean is set to 0.00016217 since it is the unconditional risk of conflict in THB. All non-

climatic factors that influence conflict risk are described by ε, a normally distributed disturbance with

standard deviation of 0.01. We select a standard deviation of 0.01 because the mean conflict risk in

THB is 0.00016 and if conflict risk is distributed Poisson (a reasonable assumption because it is an

infrequent event that can occur at any moment) then we would expect the variance in risk to equal its

mean—suggesting a standard deviation of 0.000160.5 = 0.013 ∼ 0.01.

Because only actual conflict is observed, not the latent variable conflict risk, we use conflict risk

to determine which observations are most likely to experience actual conflict9. To ensure that our

data has the same properties as that of THB, we code the 59 observations with highest conflict risk

as exhibiting conflict = 1, with the remaining 363,752 observations coded as conflict = 0. The

subsequent data set thus contains exactly the same number of observations and conflicts as the data

used by THB, but is constructed with an underlying pattern of conflict risk that rises 10% per 1σ in

rainfall. The question we now ask is whether a regression approach can recover this rainfall signal in

the conflict data.

To do this, we repeat the above procedure 10,000 times and each time mimic THB’s approach by

estimating the logistic regression

Pr(conflict|rainfall) =
exp(β × rainfall)

1 + exp(β × rainfall)
(2)

Following THB, we use a t-test to evaluate whether β is statistically significant at the 5% level and

find that this approach achieves a significant result only 5.4% of the time (see Figure 3A), even though

we know with certainty that rainfall influences conflict in this synthetic data. 94.6% of the time we

incorrectly fail to reject the null hypothesis that rainfall and conflict are unrelated (false negatives).

Because the reliability of THB’s approach depends on the signal-to-noise ratio of the data, and

lower variance than precdev, making signal detection even more difficult.
8Hsiang, Burke, and Miguel, “Quantifying the influence of climate on human conflict”.
9We use this latent variable approach to construct synthetic data because it matches the data generating process that

THB assume, implicitly, by using logistic regression.
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Figure 3: (A) Monte Carlo results evaluating whether the approach of THB can reliably detect a true
increase of conflict by 10% for a 1σ increase in rainfall (similar to meta-analysis results10) when the
variance in conflict risk equals its mean (it is approximately Poisson). Histogram displays the p-values
from 10,000 simulations. P-values above 0.05 indicate cases where the approach of THB (incorrectly)
fails to reject the null hypothesis of “no effect.” (B) Same as Panel A, except the true effect of rainfall
on conflict is 100% per 1σ.
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this ratio is determined by the data generating process that produces conflict risk, we adjusted the

assumptions used in Equation 1 to see whether THB’s approach would exhibit substantially greater

statistical power under more favorable data conditions. To do this, we repeated our procedure but

altered the coefficient of rainfall in Equation 1 so that it was 10 times larger. This implies a relation-

ship where conflict risk rises 100% for a 1σ increase in rainfall. Amplifying the climate signal in

the conflict data improves the likelihood of signal detection, however the regression approach of THB

still fails to detect this effect 89% of the time (see Figure 3B).

We then tried improving the signal-to-noise ratio by lowering the amount of statistical noise in

the synthetic data. We did this by using the original form of Equation 1, but reduced the standard

deviation of ε by a factor of ten to 0.001. This implies that the residual variance in conflict risk

(0.0012 = 0.000001) is 100 times smaller than its mean, implying a distribution of conflict risk that

is much narrower than a Poisson distribution (extreme under-dispersion). Even under this optimistic

assumption, the regression approach failed to detect the influence of rainfall on conflict 88% of the

time. Mathematically, this case is essentially identical to the case above and results mirror those in

Figure 3B.

We conclude that under both reasonable and extremely generous assumptions, the approach used

by THB cannot determine whether climate influences conflict or not. Under either scenario, the results

of THB will almost certainly look as if there is no statistically significant association.

What went wrong

Many studies are able to detect a clear statistical signal for climatological forcing of human conflict in

Africa, using both aggregated data11 and highly disaggregated data similar to that in THB12—so why

do THB run into a problem with low statistical power when these other studies do not?

As mentioned earlier, the probability of conflict in THB’s sample is 0.00016, a very small number.

Large proportional changes in this number (such as a 100% increase in risk) lead to very small level

changes in the probability of conflict, and very small level changes require extremely large samples

to detect using statistical techniques. Earlier studies did not use data sets that exhibit such a low

11Burke et al., “Warming increases the risk of civil war in Africa”; Hsiang, Meng, and Cane, “Civil conflicts are
associated with the global climate”; Hendrix and Salehyan, “Climate change, rainfall, and social conflict in Africa”.

12Hsiang, Burke, and Miguel, “Reconciling Temperature–conflict Results in Kenya”; Levy et al., “Freshwater avail-
ability anomalies and outbreak of internal war: Results from a global spatial time series analysis”; Miguel, “Poverty
and witch killing”; Harari and La Ferrara, “Conflict, Climate and Cells: A disaggregated analysis”; Fjelde and Uexkull,
“Climate triggers: Rainfall anomalies, vulnerability and communal conflict in sub-Saharan Africa”; O’Loughlin et al.,
“Climate variability and conflict risk in East Africa, 1990–2009”.
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probability of conflict, so large proportional changes in the risk of conflict correspond with sizable

changes in the probability of conflict—changes that are large enough to be detected with statistics.

The likelihood of conflict in THB’s sample is much lower than other studies because of two of

their modeling choices: (1) they study the onset of large-scale civil conflicts, which are relatively

rare occurrences and (2) they dramatically increase the resolution of their analysis relative to prior

studies13 but do not increase the number of conflict events in proportion, instead keeping the total

number of conflict observations the same as prior studies and coding each conflict as occurring in

a single 0.5◦ × 0.5◦ (roughly 55 × 55 km ≈ 34 × 34 mile) pixel within a country with many pixels.

This approach creates a large number of “non-conflict” observations that occur within countries that

experience civil conflict, differing from previous studies14 that code an entire country (or many pixels

in a country) as experiencing conflict when there is a conflict anywhere within that country. To

retain the statistical power exhibited in earlier studies, THB would have needed to describe the spatial

extent of conflict in their high-resolution framework such that the fraction of pixels exhibiting conflict

is similar to the fraction of observations exhibiting conflict in prior studies, somewhat analogous to

the approach of Levy et al.15 Other studies16 that successfully detected climatic effects on conflict at

the subnational level in Africa do so by examining types of smaller scale conflicts17, such as riots or

inter-group conflicts, that occur much more frequently than large scale civil conflict. Thus, similar to

THB, these subnational studies have many more observations in total than the national-level studies,

but unlike THB, they also have many more conflict events and thus a much higher probability of

conflicts than the 0.00016 in THB’s data.

To be clear why increasing resolution without a proportional increase in conflict counts causes a

signal-to-noise issue for THB, consider the elements of Equation 1 above:

conflict risk =
NC

NU
(1 + θ × rainfall) + ε (3)

where NC is the total number of conflicts in the sample, NU is the total number of observational

13Burke et al., “Warming increases the risk of civil war in Africa”.
14Levy et al., “Freshwater availability anomalies and outbreak of internal war: Results from a global spatial time series

analysis”; Burke et al., “Warming increases the risk of civil war in Africa”; Hsiang, Meng, and Cane, “Civil conflicts are
associated with the global climate”; Hendrix and Salehyan, “Climate change, rainfall, and social conflict in Africa”.

15Levy et al., “Freshwater availability anomalies and outbreak of internal war: Results from a global spatial time series
analysis”.

16Hsiang, Burke, and Miguel, “Reconciling Temperature–conflict Results in Kenya”; Miguel, “Poverty and witch
killing”; Harari and La Ferrara, “Conflict, Climate and Cells: A disaggregated analysis”; Fjelde and Uexkull, “Climate
triggers: Rainfall anomalies, vulnerability and communal conflict in sub-Saharan Africa”; O’Loughlin et al., “Climate
variability and conflict risk in East Africa, 1990–2009”.

17With the exception of Levy et al.
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units in the sample, and θ is the proportional change in conflict risk associated with a unit change

in the centered variable rainfall. A meta-analysis of the literature suggests θ ≈ 0.1 per 1σ change

in climate measures,18 such as rainfall. As THB increase the resolution of their data, they cut large

observational units, such as the countries-by-year observations used in Burke et al. (2009), into a large

number of small grid-squares. The effect is to increase NU to 363,811—contrast this value with the

889 observational units in Burke et al (2009). However, because THB hold the number of discreet

conflict events fixed at the 59 events recorded in the UCDP/PRIO database, NC does not grow as

THB increase their resolution. Thus, for a fixed θ, increasing resolution as THB do drives down the

signal NC

NU
θ but does not alter the unexplained variation in risk ε, causing the signal to noise ratio to

fall. Had THB coded conflicts as spanning the larger regions over which they are actually observed,

regions that include multiple grid-cells and are not constrained to the small 55×55 km (34×34 mi) of

an arbitrarily defined grid-cell, then NC would grow roughly in proportion to NU as the resolution of

the analysis increased. This was the approach empolyed by Levy et al. (2005), which recovered results

relatively similar to the rest of the literature.19

There could be benefits of using a small-pixel approach in the study of civil conflict. For example,

high resolution data containing much more localized information than national-level averages could

provide new information about the climatological conditions in locations where conflicts begin. How-

ever, the data in THB are unlikely to accomplish this, as most of the “high-resolution” rainfall data in

THB is not actually high-resolution information. Although the quality of rainfall data is not discussed

in THB, the collection of rainfall data over Africa during 1960-2004 is inconsistent and scattered in

space, as many governments lacked the resources or capacity to regularly collect and record weather

data throughout their territory. Research groups which aggregate ground-level observations to create

gridded climate data for Africa, such as the the Global Precipitation Climatology Centre (GPCC) that

generated the data used in THB, therefore must interpolate the few real weather observations in Africa

to estimate local historical weather conditions throughout much of the continent.21 The top panel of

Figure 4 displays the extent of the actual rainfall observations available to the GPCC. Most pixels in

Africa have no actual observations in the record, with only scattered coverage in most places other

than densely populated regions of South Africa, Botswana, Namibia and West Africa—and in all of

18Hsiang, Burke, and Miguel, “Quantifying the influence of climate on human conflict”.
19Hsiang, Burke, and Miguel, “Quantifying the influence of climate on human conflict”.
21B. Rudolf and U. Schneider. “Calculation of Gridded Precipitation Data for the Global Land-Surface Using In-

Situ Gauge Observations”. 2nd Workshop of the International Precipitation Working Group (2005). url: http:

//gpcc.dwd.de/.
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these locations, except South Africa, most of the weather records are incomplete, with long periods

in which no observations are recorded. Despite this incompleteness, we might speculate that some

high-resolution information could be useful if the specific locations in which conflicts are coded have

good observational records. Yet, this is not the case. The locations of conflicts, as they are coded

in THB, are the pixel in the center of each red circle in the top panel of Figure 4. Most conflicts

tend to occur in remote locations that are not densely populated and are far from regions where gov-

ernments have a strong capacity to enforce peace and stability.22 These are often the same locations

where governments typically lack the capacity needed to set up and manage weather observatories. We

demonstrate this point in the lower panel of Figure 4, where we plot the distribution of conflicts in the

THB data according to the fraction of the sample for which there are complete rainfall records. We see

that 44 out of the 59 conflicts (75%) occur in pixels that contain zero actual rainfall observations at

any time in THB’s sample. Furthermore, no conflicts occur in locations that have a complete rainfall

record. Thus, it seems that using a small-pixel approach is unlikely to provide new insights into the

highly localized influence of climate on large-scale conflict in Africa, since virtually no new localized

climate information is introduced for the locations of interest.

Conclusion

THB conclude that climate and conflict are unrelated in Africa, in disagreement with studies that

find large associations at the local,23 national24 and continental25 scales. THB’s conclusion that no

association exists is unwarranted and is a misinterpretation of their findings. Their analysis is statisti-

cally underpowered, so it cannot detect a reasonably—or even an unreasonably—strong association as

statistically significant. In addition, examination of the rainfall observations underlying THB’s data

reveals that a small-pixel approach in this sample is unlikely to yield new insights to the cause of civil

conflicts in Africa because African governments tend not to record rainfall data in locations where

civil conflicts erupt. By attempting a small-pixel analysis, THB sacrifice the statistical power that is

22J.D. Fearon and D.D. Laitin. “Ethnicity, insurgency, and civil war”. American Political Science Review 97.1 (2003),
pp. 75–90.

23Hsiang, Burke, and Miguel, “Reconciling Temperature–conflict Results in Kenya”; Miguel, “Poverty and witch
killing”; Harari and La Ferrara, “Conflict, Climate and Cells: A disaggregated analysis”; Fjelde and Uexkull, “Climate
triggers: Rainfall anomalies, vulnerability and communal conflict in sub-Saharan Africa”; O’Loughlin et al., “Climate
variability and conflict risk in East Africa, 1990–2009”.

24Levy et al., “Freshwater availability anomalies and outbreak of internal war: Results from a global spatial time series
analysis”; Burke et al., “Warming increases the risk of civil war in Africa”; Hendrix and Salehyan, “Climate change,
rainfall, and social conflict in Africa”.

25Hsiang, Meng, and Cane, “Civil conflicts are associated with the global climate”.
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critical to their findings being reliable, with little gain in location-specific climate information.

The fallacy in THB is that it does not follow logically that a failure to detect a signal implies that

none exists. It only means one did not find it. Still, an accumulation of such failures may persuade

some researchers that no such association exists.26 This consequence imposes a responsibility to ensure

that every effort is made to do statistical analyses properly. This responsibility is heightened in a case

like climate and conflict, where such a finding casts doubt upon the many other studies that have found

a strong association.27 As a rule, a null result should always be accompanied by a power calculation to

demonstrate that the null result is not spurious under reasonable assumptions—for example, the United

States National Institutes of Health enforces this level of scientific discipline by requiring researchers

to present such power calculations before a research project can be considered for funding.

The power calculation presented here demonstrates that THB’s approach is overwhelmingly likely to

obtain statistically insignificant results even when a real association between climate and conflict exists.

Thus, it is incorrect to interpret the findings of THB as a counter to the accumulating literature28

that does find a link between climate and conflict.

References

Burke, Marshall, Solomon M Hsiang, and Edward Miguel. “Climate and Conflict”. Annual Review of

Economics 7 (2015), pp. 577–617.

Burke, M.B. et al. “Warming increases the risk of civil war in Africa”. Proceedings of the National

Academy of Sciences 106.49 (2009), p. 20670.

Cane, Mark A et al. “Temperature and violence”. Nature Climate Change 4.4 (2014), pp. 234–235.

Fearon, J.D. and D.D. Laitin. “Ethnicity, insurgency, and civil war”. American Political Science Review

97.1 (2003), pp. 75–90.

Fjelde, H. and N. von Uexkull. “Climate triggers: Rainfall anomalies, vulnerability and communal

conflict in sub-Saharan Africa”. Political Geography (2012).

26Hsiang and Meng, “Reconciling disagreement over climate–conflict results in Africa.”
27Hsiang, Burke, and Miguel, “Reconciling Temperature–conflict Results in Kenya”; Levy et al., “Freshwater avail-

ability anomalies and outbreak of internal war: Results from a global spatial time series analysis”; Miguel, “Poverty and
witch killing”; Burke et al., “Warming increases the risk of civil war in Africa”; Hsiang, Meng, and Cane, “Civil conflicts
are associated with the global climate”; Harari and La Ferrara, “Conflict, Climate and Cells: A disaggregated analysis”;
Hendrix and Salehyan, “Climate change, rainfall, and social conflict in Africa”; Fjelde and Uexkull, “Climate triggers:
Rainfall anomalies, vulnerability and communal conflict in sub-Saharan Africa”; O’Loughlin et al., “Climate variability
and conflict risk in East Africa, 1990–2009”.

28Hsiang, Burke, and Miguel, “Quantifying the influence of climate on human conflict”.

14



Harari, Mariaflavia and Eliana La Ferrara. “Conflict, Climate and Cells: A disaggregated analysis”.

Working paper (2011). url: http://www-2.iies.su.se/Nobel2012/Papers/LaFerrara_Harari.

pdf.

Hendrix, C. S and I Salehyan. “Climate change, rainfall, and social conflict in Africa”. Journal of Peace

Research 49.1 (2012), pp. 35–50. doi: 10.1177/0022343311426165.

Hsiang, S.M., K.C. Meng, and M.A. Cane. “Civil conflicts are associated with the global climate”.

Nature 476.7361 (2011), pp. 438–441.

Hsiang, Solomon M and Marshall Burke. “Climate, conflict, and social stability: what does the evidence

say?” Climatic Change 123.1 (2014), pp. 39–55.

Hsiang, Solomon M, Marshall Burke, and Edward Miguel. “Quantifying the influence of climate on

human conflict”. Science 341.6151 (2013), p. 1235367.

Hsiang, Solomon M., Marshall Burke, and Edward Miguel. “Reconciling Temperature–conflict Results

in Kenya”. CEGA working paper series (2013). url: http://www.escholarship.org/uc/item/

9ct8g2zr.

Hsiang, Solomon M. and Kyle C. Meng. “Reconciling disagreement over climate–conflict results in

Africa.” Proceedings of the National Academy of Sciences 111.6 (2014), pp. 2100–2103.

Levy, M.A et al. “Freshwater availability anomalies and outbreak of internal war: Results from a global

spatial time series analysis”. international workshop on ‘Human Security and Climate Change’,

Holmen, Norway (2005). url: http://www.ciesin.columbia.edu/pdf/waterconflict.pdf.

Miguel, E. “Poverty and witch killing”. Review of Economic Studies 72.4 (2005), pp. 1153–1172.

Miguel, E., S. Satyanath, and E. Sergenti. “Economic Shocks and Civil Conflict: An Instrumental

Variables Approach”. J. Political Economy 112.4 (2004), pp. 725–753.

O’Loughlin, J et al. “Climate variability and conflict risk in East Africa, 1990–2009”. Proc. Natl. Acad.

Sci. USA (2012).

Rudolf, B. and U. Schneider. “Calculation of Gridded Precipitation Data for the Global Land-Surface

Using In-Situ Gauge Observations”. 2nd Workshop of the International Precipitation Working

Group (2005). url: http://gpcc.dwd.de/.

Theisen, O.M, H Holtermann, and H Buhaug. “Climate wars? Assessing the claim that drought breeds

conflict”. International Security 36.3 (2012), pp. 79–106.

15


