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Abstract
Accurate local-level poverty measurement is an es-
sential task for governments and humanitarian or-
ganizations to track the progress towards improv-
ing livelihoods and distribute scarce resources. Re-
cent computer vision advances in using satellite
imagery to predict poverty have shown increasing
accuracy, but they do not generate features that
are interpretable to policymakers, inhibiting adop-
tion by practitioners. Here we demonstrate an in-
terpretable computational framework to accurately
predict poverty at a local level by applying object
detectors to high resolution (30cm) satellite im-
ages. Using the weighted counts of objects as fea-
tures, we achieve 0.539 Pearson’s r2 in predicting
village level poverty in Uganda, a 31% improve-
ment over existing (and less interpretable) bench-
marks. Feature importance and ablation analysis
reveal intuitive relationships between object counts
and poverty predictions. Our results suggest that
interpretability does not have to come at the cost of
performance, at least in this important domain.

1 Introduction
Accurate measurements of poverty and related human liveli-
hood outcomes critically shape the decisions of governments
and humanitarian organizations around the world, and the
eradication of poverty remains the first of the United Nations
Sustainable Development Goals [1]. However, reliable local-
level measurements of economic well-being are rare in many
parts of the developing world. Such measurements are typi-
cally made with household surveys, which are expensive and
time consuming to conduct across broad geographies, and
as a result such surveys are conducted infrequently and on
limited numbers of households. For example, Uganda (our
study country) is one of the best-surveyed countries in Africa,
but surveys occur at best every few years, and when they do
occur often only survey a few hundred villages across the
whole country (Fig. 1). Scaling up these ground-based sur-
veys to cover more regions and more years would likely be
prohibitively expensive for most countries in the developing
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world [2]. The resulting lack of frequent, reliable local-level
information on economic livelihoods hampers the ability of
governments and other organizations to target assistance to
those who need it and to understand whether such assistance
is having its intended effect.

To tackle this data gap, an alternative strategy has been
to try to use passively-collected data from non-traditional
sources to shed light on local-level economic outcomes. Such
work has shown promise in measuring certain indicators of
economic livelihoods at local level. For instance, [3] show
how features extracted from cell phone data can be used to
predict asset wealth in Rwanda, and [4] show how applying
NLP techniques to Wikipedia articles can be used to predict
asset wealth in multiple developing countries, and [5] show
how a transfer learning approach that uses coarse informa-
tion from nighttime satellite images to extract features from
daytime high-resolution imagery can also predict asset wealth
variation across multiple African countries.

These existing approaches to using non-traditional data are
promising, given that they are inexpensive and inherently
scalable, but they face two main challenges that inhibit their
broader adoption by policymakers. The first is the outcome
being measured. While measures of asset ownership are
thought to be relevant metrics for understanding longer-run
household well-being [6], official measurement of poverty re-
quires data on consumption expenditure (i.e. the value of all
goods consumed by a household over a given period), and
existing methods have either not been used to predict con-
sumption data or perform much more poorly when predict-
ing consumption than when predicting other livelihood indi-
cators such as asset wealth [5]. Second, interpretability of
model predictions is key for whether policymakers will adopt
machine-learning based approaches to livelihoods measure-
ment, and current approaches attempt to maximize predictive
performance rather than interpretability. This tradeoff, cen-
tral to many problems at the interface of machine learning
and policy [7], has yet to be navigated in the poverty domain.

Here we demonstrate an interpretable computational
framework for predicting local-level consumption expendi-
ture using object detection on high-resolution (30cm) day-
time satellite imagery. We focus on Uganda, a country with
existing high-quality ground data on consumption where per-
formance benchmark are available. We first train a satellite
imagery object detector on a publicly available, global scale
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object detection dataset, called xView [8], which avoids lo-
cation specific training and provides a more general object
detection model. We then apply this detector to high reso-
lution images taken over hundreds of villages across Uganda
that were measured in an existing georeferenced household
survey, and use extracted counts of detected objects as fea-
tures in a final prediction of consumption expenditure. We
show that not only does our approach substantially outper-
form previous performance benchmarks on the same task, it
also yields features that are immediately and intuitively inter-
pretable to the analyst or policy-maker.

2 Related Work
Poverty Prediction from Imagery Multiple studies have
sought to use various types of satellite imagery for local-level
prediction of economic livelihoods. As already described, [5]
train a CNN to extract features in high-resolution daytime
images using low-resolution nighttime images as labels, and
then use the extracted features to predict asset wealth and con-
sumption expenditure across five African countries. [9] train
a CNN to predict African asset wealth from lower-resolution
(30m) multi-spectral satellite imagery, achieving similar per-
formance to [5]. These approaches provide accurate methods
for predicting local-level asset wealth, but the CNN-extracted
features used to make predictions are not easily interpretable,
and performance is substantially lower when predicting con-
sumption expenditure rather than asset wealth.

Two related papers use object detection approaches to pre-
dicting economic livelihoods from imagery. [10] show how
information on the make and count of cars detected in Google
Streetview imagery can be used to predict socioeconomic out-
comes at local level in the US. This work is promising in a de-
veloped world context where streetview imagery is available,
but challenging to employ in the developing world where
such imagery is very rare, and where car ownership is un-
common. In work perhaps closest to ours, an unpublished
paper by [11] use detected objects and textural features from
high-resolution imagery to predict consumption in Sri Lanka,
but model performance is not validated out of sample and the
object detection approach is not described.

3 Problem Setup
3.1 Poverty Estimation from Remote Sensing Data
The outcome of interest in this paper is consumption expen-
diture, which is the metric used to compute poverty statistics;
a household or individual is said to be poor or in poverty if
their measured consumption expenditure falls below a defined
threshold (currently $1.90 per capita per day). Throughout
the paper we use “poverty” as shorthand for “consumption
expenditure”, although we emphasize that the former is com-
puted from the latter. While typical household surveys mea-
sure consumption expenditure at the household level, publicly
available data typically only release geo-coordinate informa-
tion at the “cluster” level – which is a village in rural areas and
a neighborhood in urban areas. Efforts to predict poverty have
thus focused on predicting at the cluster level (or more aggre-
gated levels), and we do the same here. Let {(xi, yi, ci)}Ni=1

be a set of N villages surveyed, where ci = (clati , clongi ) is the
latitude and longitude coordinates for cluster i, and yi ∈ R is
the corresponding average poverty index for a particular year.

For each cluster i, we can acquire high resolution satel-
lite imagery corresponding to the survey year xi ∈ I =
RW×H×B , a W × H image with B channels. Following
[5], our goal is to learn a regressor f : I → R to predict the
poverty index yi from xi. Here our goal is to find a regressor
that is both accurate and interpretable, where we use the latter
to mean a model that provides insight to a policy community
on why it makes the predictions it does in a given location.

3.2 Dataset
Socio-economic data
The dataset comes from field Living Standards Measurement
Study (LSMS) survey conducted in Uganda by the Uganda
Bureau of Statistics between 2011 and 2012 [12]. The LSMS
survey we use here consists of data from 2,716 households in
Uganda, which are grouped into unique locations called clus-
ters. The latitude and longitude location, ci = (clati , clongi ),
of a cluster i = {1, 2, . . . , N} is given, with noise of up to
5 km added in each direction by the surveyers to protect pri-
vacy. Individual household locations in each cluster i are also
withheld to preserve anonymity. We use all N = 320 clus-
ters in the survey to test the performance of our method in
terms of predicting the average poverty index, yi for a group i.
For each ci, the survey measures the poverty level by the per
capital daily consumption in dollars. For simplicity, in this
study, we name the per capital daily consumption in dollars
as LSMS poverty score. We visualize the chosen locations on
the map as well as their corresponding LSMS poverty scores
in Fig. 1. From the figure, we can see that the surveyed lo-
cations are scattered near the border of states and high per-
centage of these locations have relatively low poverty scores.

Uganda Satellite Imagery
The satellite imagery, xi corresponding to cluster ci is repre-
sented by K = 34×34 = 1156 images of W = 1000×H =
1000 pixels with B = 3 channels, arranged in a 34 × 34
square grid. This corresponds to a 10 km × 10 km spatial
neighborhood centered at ci. We consider a large neighbor-
hood to deal with the noise in the cluster coordinates. High
resolution aerial images have been proven to be effective in
many computer vision tasks including image recognition [13;
14], object detection [8; 15], and object tracking [16]. For this
reason, we use the high resolution images from DigitalGlobe
satellites with three bands (RGB) and 30cm pixel resolution.
Figure 1 illustrates an example cluster from Uganda. For-
mally, we represent all the images corresponding to ci as a
sequence of K tiles as xi = {xj

i}Kj=1.

4 Fine-grained Detection on Satellite Images
Contrary to existing methods for poverty mapping which per-
form end-to-end learning [5; 4; 9], we use an intermediate
object detection phase to first obtain interpretable features for
subsequent poverty prediction. However, we do not have ob-
ject annotations for satellite images from Uganda. Therefore,



Fixed-Wing Aircraft Passenger-Vehicle Truck Railway Vehicle Maritime Vessel Engineering Vehicle Building Helipad Construction Site Vehicle Lot None
Small Aircraft Small Car Pickup Truck Passenger Car Motoboat Tower Crane Hut/ Tent Pylon
Cargo Bus Utility Truck Cargo Car Sailboat Container Crane Shed Shipping Container

Cargo Truck Flat Car Tugboat Reach Stacker Aircraft Hangar Shipping Container Lot
Truck w/ Box Tank Car Barge Straddle Carrier Damaged Building Storage Tank
Truck Tractor Locomotive Fishing Vessel Mobile Crane Facility Tower Structure

Trailer Ferry Dump Truck Helicopter
Truck w/ Flatbed Yacht Haul Truck
Truck w/ Liquid Container Ship Scraper/ Tractor

Oil Tanker Front Loader
Excavator

Cement Mixer
Ground Grader

Crane Truck

Table 1: Parent and child level classes in xView . Originally, Helipad, Construction Site, and Vehicle Lot are placed into the None parent
class. We change the structure slightly by using each one of them as an independent parent class. Finally, in our parent level detector we
exclude the None class resulting in 10 parent level classes. To train the child level detector, we use the original 60 child level classes including
Helipad, Construction Site, and Vehicle Lot.

Building Fixed-Wing
Aircraft

Passenger
Vehicle Truck Railway

Vehicle
Maritime
Vessel

Engineering
Vehicle Helipad Vehicle

Lot
Construction
Site

AP 0.40 0.59 0.42 0.27 0.39 0.24 0.17 0.0 0.012 0.0003
AR 0.62 0.65 0.76 0.56 0.49 0.47 0.37 0.0 0.06 0.006

Table 2: Class wise performance (average precision and recall) of YOLOv3 when trained using parent level classes (10 classes). See appendix
for the performance of YOLOv3 on child classes.

we perform transfer learning by training an object detector on
a different but related source dataset Ds.

4.1 Object Detection Dataset
We use xView [8], as our source dataset. It is one of the
largest and most diverse publicly available overhead imagery
datasets for object detection. It covers over 1, 400 km2 of the
earth’s surface, with 60 classes and approximately 1 million
labeled objects. The satellite images are collected from Dig-
italGlobe satellites at 0.3 m GSD, aligning with the GSD of
our target region satellite imagery {xi}Ni=1. Moreover, xView
uses a tree-structured ontology of classes. The classes are or-
ganized hierarchically similar to [17; 18] where children are
more specific than their parents (e.g., fixed-wing aircraft as a
parent of small aircraft and cargo plane). Overall, there are
60 child classes and 10 parent classes. We show the hierarchy
that we use in xView in Table 1.

4.2 Training the Object Detector
Models Since we work on very large tiles (∼3000×3000
pixels), we only consider single stage detectors. Consider-
ing the trade off between run-time performance and accu-
racy on small objects, YOLOv3 [19] outperforms other sin-
gle stage detectors [20; 21] and performs almost on par with
RetinaNet [22] but 3.8 × faster [19] on small objects while
running significantly faster than two-stage detectors [23;
24]. Therefore, we use YOLOv3 object detector with a Dark-
Net53 [19] backbone architecture.

Dataset Preparation The xView dataset consists of 847
large images (roughly 3000 × 3000 px). YOLOv3 is usually
used with an input image size of 416 × 416 px. Therefore,
we randomly chip 416× 416 px tiles from the xView images
and discard tiles without any object of interest. This process
results in 36996 such tiles of which we use 30736 tiles for
training and 6260 tiles for testing.

Training and Evaluation We use the standard per-class av-
erage precision, mean average precision (mAP), and per-class
recall, mean average recall (mAR) metrics [19; 22] to evalu-
ate our trained object detector. We fine-tune the weights of
the YOLOv3 model, pre-trained on the ImageNet [17], us-
ing the training split of the xView dataset. Since xView has
an ontology of parent and child level classes, we train two
YOLOv3 object detectors using parent level and child level
classes seperately.

After training the models, we validate their performance on
the test set of xView. The detector trained using parent level
classes (10 classes) achieves mAP of 0.248 and mAR of 0.42.
On the other hand, the one trained on child classes achieves
mAP of 0.0745 and mAR of 0.242. Table 2 shows the class-
wise performance of the parent-level object detector on the
test set. For comparison, 8 report 0.14 mAP, but they use
a separate validation and test set in addition to the training
set (which are not publicly available) so the models are not
directly comparable. While not state of the art, our detector
reliably identifies objects, especially at the parent level.

4.3 Object Detection on Uganda Satellite Images
As described in Section 3.2, each xi is represented by a set
of K images, {xj

i}Kj=1. Each 1000× 1000 px tile (i.e. xj
i ) is

further chipped into 9 416× 416 px small tiles (with overlap
of 124 px) and fed to YOLOv3.

Although the presence of objects across tile borders could
decrease performance, this method is highly parallelizable
and enables us to scale to very large regions. We perform ob-
ject detection on 320 × 1156 × 9 chips (more than 3 million
images), which takes about a day and a half using 4 NVIDIA
1080Ti GPUs. In total, we detect 768404 objects. Each detec-
tion is denoted by a tuple (xc, yc, w, h, l, s), where xc and yc
represent the center coordinates of the bounding box, w and
h represent the width and height of the bounding box, l and s
represent the object class label and class confidence score. In
Section 5.1, we explain how we use these details to create in-



Figure 1: Pipeline of the proposed approach. For each cluster we acquire 1156 images, arranged in a 34 × 34 grid, where each image is
an RGB image of 1000 × 1000 px. We run an object detector on its 10 × 10 km2 neighborhood and obtain the object counts for each
xView class as a L-dimensional categorical feature vector. This is done by running the detector on every single image in a cluster, resulting
in a 34 × 34 × L dimensional feature vector. Finally, we perform summation across the first two dimensions and get the feature vector
representing the cluster, with each dimension containing the object counts corresponding to an object class. Given the cluster level feature
vector, we regress the LSMS poverty score.

terpretable features. Additionally, we experiment with object
detections obtained at different confidence thresholds which
we discuss in Section 6.1.

Transfer performance in Uganda The absence of ground
truth object annotations for our Uganda imagery {xj

i}Kj=1 pre-
vents us from quantitatively measuring the detector’s perfor-
mance on Uganda satellite imagery. However, we manually
annotated 10 images from the Uganda dataset together with
the detected bounding boxes to measure the detector’s per-
formance on building and truck classes. We found that the
detector achieves about 50%, and 45% AR for Building and
Truck which is slightly lower than the AR scores for the same
classes on the xView test set. We attribute this slight differ-
ence to the problem of domain shift and we plan to address
this problem via domain adaptation in a future work. To qual-
itatively test the robustness of our xView-trained object detec-
tor, we also visualize its performance on two representative
tiles in Fig. 2. The detection results prove the effectiveness
of transferring the YOLOv3 model to DigitalGlobe imagery
it has not been trained on.

Figure 2: Sample detection results from Uganda. Zoom-in is rec-
ommended to visualize the bounding box classes. See appendix for
more examples.

5 Fine-level Poverty Mapping
5.1 Feature Extraction from Clusters
Our object detection pipeline outputs zi = {zji }Kk=1, which
consists of K sets and each set zji ∈ zi consists of nj

i object
detections for each tile xj

i of xi. We use the nj
i object detec-

tions to generate a L-dimensional vector, vj
i ∈ RL (where

L is the number of object labels/classes), by counting the
number of detected objects in each class with each object
weighted by its confidence score or size or their combina-
tion (details below). This process results in K L-dimensional
vectors vi = {vj

i }Kk=1. Finally, we aggregate these K vec-
tors into a single L-dimensional categorical feature vector mi

by summing over tiles: mi =
∑K

j=1 v
j
i . While many other

options are possible, in this work we explore four types of
features:
Counts Raw object counts corresponding to each class. As
mentioned earlier, we collapse the nj

i object detections corre-
sponding to zji into a L-dimensional categorical feature vec-
tor vj

i . Here, each dimension represents an object class and
contains the number of objects detected corresponding to that
class. We aggregate these K L-dimensional vectors (vj

i ) into
a single L-dimensional categorical feature vector mi

t ∈ Mt.
For each class ` ∈ {1, 2, . . . , L}

vj
i [`] =

nj
i∑

k=1

1 ∗ 1[` == ok[l]] (1)

Confidence×Counts Each detected object is weighted by
its class confidence score. The intuition is to reduce the con-
tributions of less confident detections. Here each dimension
corresponds to the sum of class confidence scores of the de-
tected objects of that class. For each class ` ∈ {1, 2, . . . , L}

vj
i [`] =

nj
i∑

k=1

ok[s] ∗ 1[` == ok[l]] (2)



Size×Counts Each detected object is weighted by its
bounding box area. We posit that weighting based on area
coverage of an object class can be an important factor. For
example, an area with 10 big buildings might have a differ-
ent wealth level than an area with 10 small buildings. Each
dimension in mi contains the sum of areas of the bounding
boxes of the detected objects of that class. For each class
` ∈ {1, 2, . . . , L}

vj
i [`] =

nj
i∑

k=1

ok[w] ∗ ok[h] ∗ 1[` == ok[l]] (3)

(Confidence, Size)×Counts Each detected object is
weighted by its class confidence score and the area of its
bounding box. We concatenate the Confidence and Size based
features to create a 2L-dimensional vector.

5.2 Models, Training and Evaluation
Given the cluster level categorical feature vector, mi, we esti-
mate its poverty index, yi with a regression model. Since we
value interpretability, we consider Gradient Boosting Deci-
sion Trees, Linear Regression, Ridge Regression, and Lasso
Regression. As we regress directly on the LSMS poverty
index, we quantify the performance of our model using the
square of the Pearson correlation coefficient (Pearson’s r2).
Pearson’s r2, provides a measure of how well observed out-
comes are replicated by the model. This metric was chosen so
that comparative analysis could be performed with previous
literature [5]. Pearson’s r2 is invariant under separate changes
in scale between the two variables. This allows the metric to
provide insight into the ability of the model to distinguish be-
tween poverty levels. This is relevant for many downstream
poverty tasks, including the distribution of program aid under
a fixed budget (where aid is disbursed to households start-
ing with the poorest, until the budget is exhausted), or in the
evaluation of anti-poverty programs, where outcomes are of-
ten measured in terms of percentage changes in the poverty
metric. Due to small size of the dataset, we use a Leave-one-
out cross validation (LOOCV) strategy. Since nearby clus-
ters could have some geographic overlap, we remove clusters
which are overlapping with the test cluster from the train split
to avoid leaking information to the test point.

6 Experiments
6.1 Poverty Mapping Results
Quantitative Analysis Table 3 shows the results of LSMS
poverty prediction in Uganda. The object detections are ob-
tained using a 0.6 confidence threshold (the effect of this
hyper-parameter is evaluated below). The best result of 0.539
Pearson’s r2 is obtained using GBDT trained on parent level
Raw object Counts features (red color entry). A scatter plot of
GBDT predictions v.s. ground truth is shown in Fig. 3. It can
be seen that our GBDT model can explain a large fraction of
the variance in terms of object counts automatically identified
in high resolution satellite images. To the best of our knowl-
edge, this is the first time this capability has been demon-
strated with a rigorous and reproducibile out-of-sample eval-
uation (see however the related but unpublished paper by 11).

We observe that GBDT performs consistently better than
other regression models across the four features we consider.
As seen in Table 3, object detection based features deliver
positive r2 with a simple linear regression method which sug-
gests that they have positive correlation with LSMS poverty
scores. However, the main drawback of linear regression
against GBDT is that it predicts negative values, which is not
reasonable as poverty indices are non-negative. In general,
the features are useful, but powerful regression models are
still required to achieve better performance.

We also find that finer-grained object detections (at the
child level in the xView class hierarchy) can perform better
than the coarser ones (second and third best) in some cases.
This is likely because although they convey more informa-
tion, detection and classification is harder at the finer level
(see performance drop in Section 4), likely resulting in nois-
ier predictions. Additionally, parent level features are more
suited for interpretability, due to household level descriptions,
which we show later.

— Best — Second Best — Third Best
Features/Method GBDT Linear Lasso Ridge

Parent Child Parent Child Parent Child Parent Child
Counts 0.539 0.508 0.311 0.324 0.312 0.46 0.311 0.329

Confidence × Counts 0.466 0.485 0.305 0.398 0.305 0.461 0.305 0.409
Size × Counts 0.455 0.535 0.363 0.47 0.363 0.476 0.363 0.47

(Conf., Size) × Counts 0.495 0.516 0.411 0.369 0.418 0.343 0.411 0.476

Table 3: LSMS poverty score prediction results in Pearson’s r2 us-
ing parent level features (YOLOv3 trained on 10 classes) and child
level features (YOLOv3 trained on 60 classes).
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Figure 3: Regression result of GBDT using parent level counts.

Comparison to Baselines and State-of-the-Art We com-
pare our method with two baselines and a state-of-the-art
method: (a) NL-CNN where we regress the LSMS poverty
scores using a 2-layer CNN with Nightlight Images (48× 48
px) representing the clusters in Uganda as input, (b) RGB-
CNN where we regress the LSMS poverty scores using Im-



ageNet [17] pretrained ResNet-18 [25] model with central
tile representing ci as input, and (c) Transfer Learning with
Nightlights, [5] proposed a transfer learning approach where
nighttime light intensities are used as a data-rich proxy.

Results are shown in Table 4. Our model substantially out-
performs all three baselines, including published state-of-the-
art results on the same task in [5]. We similarly outperform
the NL-CNN baseline, a simpler version of which (scalar
nightlights) is often used for impact evaluation in policy work
[26]. Finally, the performance of the RGB-CNN baseline re-
veals the limitation of directly regressing CNNs on daytime
images, at least in our setting with small numbers of labels.
As discussed below, these performance improvements do not
come at the cost of interpretability – rather, our model pre-
dictions are much more interpretable than each of these three
baselines.

Method RGB-CNN NL-CNN [5] Ours

r2 0.04 0.39 0.41 0.54

Table 4: Comparison with baseline and state-of-the-art methods.

Impact of Detector’s Confidence Threshold Finally, we
analyze the effect of confidence threshold for object detec-
tor on the poverty prediction task in Fig. 4. We observe that
when considering only Counts features, we get the best per-
formance at 0.6 threshold. However, even for very small
thresholds, we achieve around 0.3-0.5 Pearson’s r2 scores.
We explore this finding in Fig. 3b, and observe that the ratio
of classes in terms of number of bounding boxes remain sim-
ilar across different thresholds. These results imply that the
ratio of object counts is perhaps more useful than simply the
counts themselves – an insight also consistent with the sub-
stantial performance boost from GBT over unregularized and
regularized linear models in Table 1.

6.2 Interpretability
Existing approaches to poverty prediction using unstructured
data from satellites or other sources have understandably
sought to maximize predictive performance [5; 9; 4], but
this has come at the cost of interpretability, as most of the
extracted features used for prediction do not have obvious
semantic meaning. While (to our knowledge) no quantita-
tive data have been collected on the topic, our personal ex-
perience on multiple continents over many years is that the
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Figure 4: Left: Poverty score regression results of GBDT model us-
ing object detection features (parent level class features) at different
confidence thresholds. Right: Average object counts across clusters
for each parent class at difference confidence thresholds.

lack of interpretability of CNN-based poverty predictions can
make policymakers understandably reluctant to trust these
predictions and to use them in decision-making. Enhancing
the interpretability of ML-based approaches more broadly is
thought to be critical component of successful application in
many policy domains [27].

Relative to an end-to-end deep learning approach, our two-
step approach with object detection provides categorical fea-
tures that are easily understood. We now explore whether
these features also have an intuitive mapping to poverty out-
comes in three analyses.
Explanations via SHAP In this section, we explain the
effect of individual features (parent level GBDT model) on
poverty score predictions using SHAP (SHapley Additive ex-
Planations) [28]. SHAP is a game theoretic approach to ex-
plain the output of any machine learning model. It connects
optimal credit allocation with local explanations using the
classic Shapley values from game theory and their related
extensions. We particularly use TreeSHAP [29] which is
a variant of SHAP for tree-based machine learning models.
TreeSHAP significantly improves the interpretability of tree-
based models through a) a polynomial time algorithm to com-
pute optimal explanations based on game theory, b) explana-
tions that directly measure local feature interaction effects,
and c) tools for understanding global model structure based
on combining many local explanations of each prediction.
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Figure 5: Left: Summary of the effects of all the features. Right:
Dependence plot showing the effect of a single feature across the
whole dataset. In both figures, the color represents the feature value
(red is high, blue is low). See appendix for further dependence
plots.

To get an overview of which features are most important
for a model we plot the SHAP values of every feature for ev-
ery sample. The plot in Figure 5 (left) sorts features by the
sum of SHAP value magnitudes over all samples, and uses
SHAP values to show the distribution of the impacts each fea-
ture has on the model output. The color represents the feature
value (red high, blue low). We find that Truck tends to have
a high impact on the model’s output. Higher #Trucks pushes
the output to a higher value and low #Trucks has a negative
impact on the output, thereby lowering the predicted value.

To understand how the Truck feature effects the output of
the model we plot the SHAP value of Truck feature vs. the
value of the Truck feature for all the examples in the dataset.
Since SHAP values represent a feature’s responsibility for a
change in the model output, the plot in Figure 5 (right) rep-
resents the change in predicted poverty score as Truck fea-
ture changes and also reveals the interaction between Truck
feature and Maritime Vessel feature. We find that for small
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Figure 6: Left: Feature Importance of parent classes in the GBDT
model. Right: Ablation analysis where the red line represents the
GBDT’s performance when including all the parent classes.

#Trucks, low #Maritime Vessels decreases the Truck SHAP
value. This can be seen from the set of points that form a ver-
tical line (towards bottom left) where the color changes from
blue (low #Maritime Vessels) to red (high #Maritime Vessels)
as Truck SHAP value increases.

Feature Importance We also plot the sum of SHAP value
magnitudes over all samples for the various features (feature
importance). Figure 6 (left) shows the importance of the 10
features (parent level features) in poverty prediction. Truck
has the highest importance. It is followed by Passenger Vehi-
cle, Maritime Vessel, and Engg. Vehicle with similar feature
importances.

Ablation Analysis Finally, we run an ablation study by
training the regression model using all the categorical fea-
tures in the train set and at test time we eliminate a particu-
lar feature by collapsing it to zero. We perform this ablation
study with the parent level features as it provides better inter-
pretability. Consistent with the feature importance scores, in
Figure 6 we find that when Truck feature is eliminated at test
time, the Pearson’s r2 value is impacted most.

7 Conclusion
In this work, we attempt to predict consumption expendi-
ture from high resolution satellite images. We propose an
efficient, explainable, and transferable method that combines
object detection and regression. This model achieves a Pear-
son’s r2 of 0.54 in predicting village level consumption ex-
penditure in Uganda, even when the provided locations are
affected by noise (for privacy reasons) and the overall number
of labels is small (∼300). The presence of trucks appears to
be particularly useful for measuring local scale poverty in our
setting. We also demonstrate that our features achieve posi-
tive results even with simple linear regression model. Our re-
sults offer a promising approach for generating interpretable
poverty predictions for important livelihood outcomes, even
in settings with limited training data.
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Figure 7: Dependence plots showing the effect of a single feature
across the whole dataset. In both figures, the color represents the
feature value (red is high, blue is low)

Here we provide additional analysis to understand the ef-
fects of various features on the output of the model. Similar
to Figure 5 (right) we plot (Figure 7) the SHAP value of a
feature vs. the value of that feature for all the examples in the
dataset.

Figure 7 represents the change in predicted poverty score
as the feature value under consideration changes and also re-
veals the interaction between that feature and another feature.
Top left figure shows that regions with high #Trucks also have
high #Passenger Vehicles. From top right figure, we find that
higher #Railway Vehicles pushes the output to a higher value
and low #Railway Vehicles has a negative impact on the out-
put, thereby lowering the predicted value. We also observe
that regions with high #Railway Vehicles also have high #Pas-
senger Vehicles. On the other, we find (bottom left and bot-
tom right figures) that Buildings and Engineering Vehicles do
not tend to show much impact on the prediction value as their
value increases.

Figure 8 compares an example region (left) with low
poverty level and high #Trucks against a region with high
poverty level and low #Trucks. We find that regions with



Figure 8: Left: A region with high wealth level and high truck num-
bers. A region with low wealth level and low truck numbers.

Figure 9: Additional detection results from Uganda. Zoom-in is rec-
ommended to visualize the bounding boxes and labels. The detec-
tor can reliably detect buildings and trucks with reasonable overlap.
However, it misses some of the small cars. Detecting small cars is
a very challenging task due to very small number of representative
pixels .

high truck numbers have better road network and transporta-
tion connectivity to nearby regions, thereby resulting in better
wealth index in those regions as transportation and connectiv-
ity play a vital role in the economic growth of a region.

Class AP AR
Aircraft Hangar 0.000 0.000

Barge 0.010 0.040
Building 0.593 0.787

Bus 0.144 0.401
Cargo Truck 0.002 0.014

Cargo/container Car 0.272 0.519
Cement Mixer 0.002 0.012

Construction Site 0.015 0.067
Container Crane 0.015 0.040
Container Ship 0.218 0.304

Crane Truck 0.000 0.000
Damaged/demolished Building 0.000 0.000

Dump Truck 0.014 0.072
Engineering Vehicle 0.000 0.000

Excavator 0.250 0.462
Facility 0.000 0.000
Ferry 0.003 0.018

Fishing Vessel 0.002 0.010
Fixed-Wing Aircraft 0.003 0.002

Flat Car 0.018 0.018
Front Loader/Bulldozer 0.026 0.065

Ground Grader 0.000 0.000
Haul Truck 0.251 0.472
Helicopter 0.001 0.001

Helipad 0.050 0.050
Hut/Tent 0.000 0.000

Locomotive 0.000 0.000
Maritime Vessel 0.088 0.190

Mobile Crane 0.038 0.101
Motorboat 0.023 0.061
Oil Tanker 0.000 0.000

Passenger Vehicle 0.000 0.000
Passenger Car 0.486 0.759

Passenger/Cargo Plane 0.402 0.626
Pickup Truck 0.001 0.002

Pylon 0.337 0.589
Railway Vehicle 0.00 0.00
Reach Stacker 0.027 0.083

Sailboat 0.164 0.445
Shed 0.026 0.027

Shipping Container 0.002 0.018
Shipping Container Lot 0.185 0.398

Small Aircraft 0.109 0.288
Small Car 0.540 0.917

Storage Tank 0.000 0.000
Straddle Carrier 0.059 0.157

Tank Car 0.000 0.000
Tower 0.000 0.000

Tower Crane 0.013 0.033
Tractor 0.000 0.000
Trailer 0.046 0.237
Truck 0.189 0.637

Truck Tractor 0.000 0.004
Truck Tractor w/ Box Trailer 0.195 0.552

Truck Tractor w/ Flatbed Trailer 0.012 0.038
Truck Tractor w/ Liquid Tank 0.001 0.023

Tugboat 0.004 0.027
Utility Truck 0.000 0.000
Vehicle Lot 0.033 0.098

Yacht 0.064 0.162
Total 0.082 0.163

Table 5: The AP and AR scores for child classes.
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