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Abstract

We model a simple market setting in which fragmentation of trade of the same
asset across multiple exchanges improves allocative efficiency. Fragmentation reduces
the inhibiting effect of price-impact avoidance on order submission. Although frag-
mentation reduces market depth on each exchange, it also isolates cross-exchange price
impacts, leading to more aggressive overall order submission and better rebalancing of
unwanted positions across traders. Fragmentation also has implications for the extent
to which prices reveal traders’ private information. While a given exchange price is less
informative in more fragmented markets, all exchange prices taken together are more
informative.
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1 Introduction

In modern financial markets, many financial instruments trade simultaneously on multiple

exchanges (Budish, Lee, and Shim, 2019; Gresse et al., 2012; Pagnotta and Philippon, 2018).

This fragmentation of trade across venues raises concerns over market depth. One might

therefore anticipate that fragmentation worsens allocative efficiency through the strategic

avoidance of price impact, which inhibits beneficial gains from trade (Vayanos, 1999; Du and

Zhu, 2017). Less aggressive trade could in turn impair price informativeness, relative to a

centralized market in which all trade flows are consolidated. Perhaps surprisingly, we offer

a simple model of how fragmentation of trade across multiple exchanges, despite reducing

market depth, actually improves allocative efficiency and price informativeness.

In the equilibrium of our market setting, the option to split orders across different ex-

changes reduces the inhibiting effect of price-impact avoidance on total order submission.

Though market depth on each exchange decreases with fragmentation, the common practice

of order splitting allows traders to shield orders submitted to a given exchange from the price

impact of orders submitted to other exchanges. This effect is sufficiently strong that frag-

mentation increases overall order aggressiveness. This in turn can result in a more efficient

redistribution of unwanted positions across traders and cause prices, collectively across all

exchanges, to better reflect traders’ private information. Once fragmentation is sufficiently

severe, however, any additional fragmentation can cause trade to become too aggressive,

from a welfare perspective. However, at least in the simple one-period version of our model,

any degree of fragmentation is welfare-superior to a centralized market.

Our model abstracts from some important aspects of functioning financial markets. In

particular, we do not consider the impact of fragmentation on exchange competition or

transaction fees.1 We also ignore the adverse impact of sniping by fast traders (Budish,

Cramton, and Shim, 2015; Malinova and Park, 2019; Pagnotta and Philippon, 2018). Given

these and other limitations of our model, we avoid taking a normative or policy stance on

fragmentation. Our primary marginal contribution is to identify a potentially important new

economic channel for the welfare implications of market fragmentation.

We now briefly summarize our model and the main results. A single asset is traded

by N strategic traders participating on E exchanges. Before each round of trade, strategic

trader i has a quantity of the asset that is privately observed by trader i. Each trader

submits a package of limit orders (forming a demand function) to each of the exchanges,

simultaneously. As in common practice (Wittwer, 2020), orders to a given exchange cannot

be made contingent on clearing prices at other exchanges. The objective of each strategic

1As shown by Budish, Lee, and Shim (2019), transaction fees are economically small.
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trader, given the conjectured order submission strategies of the other traders, is to maximize

the total expected discounted cash compensation received for executed orders, net of the

present value of asset holding costs that are quadratic in the trader’s asset position, as in

the one-exchange model of Du and Zhu (2017).

At each exchange, “liquidity traders” submit non-discretionary market orders. The ag-

gregate quantities of market orders submitted by liquidity traders to the various exchanges

are exogenous random variables, independently and identically distributed across exchanges

and periods. In a one-period setting, we also consider a version of the model with no liquidity

traders, and a version in which liquidity traders who are local to each exchange are strategic

with respect to order quantities. In any version of the model, because agents’ preferences

are quasilinear in cash and because total cash payments net to zero by market clearing, an

unambiguous measure of allocative efficiency is the expected discounted sum of strategic

traders’ quadratic holding costs.

Price impact is increased by market fragmentation because of cross-exchange price in-

ference, by which traders choose order submissions in light of the positive equilibrium cor-

relation between exchange prices. For example, conditional on a clearing price on a given

exchange that is lower than expected, a buyer expects to be assigned higher quantities on

all exchanges. This effect dampens the aggressiveness of order submissions, which reduces

market depth and heightens market impact, relative to a single-exchange setting. Despite

this reduction in market depth, the ability to split orders across exchanges ensures that,

in equilibrium, the total order submission of each strategic trader is aggressive enough to

achieve the efficient allocation. This natural implication of fragmentation is novel to this

paper, as far as we know.

We solve both static and dynamic versions of the model. In the static model, as the

number of exchanges increases, the equilibrium allocation becomes more efficient until a

point at which trade becomes “too aggressive.” We find that the socially optimal number

of exchanges depends only on (a) the number of strategic traders and (b) the ratio of the

variance of the endowments of strategic traders to the variance of liquidity trade. We show

that when there are more exchanges, the price on any individual exchange is less informative

of the aggregate asset inventory of strategic traders, the key “state variable” of our model,

yet the exchange prices taken together are more informative.

In the dynamic version of the model, we show that market fragmentation still allows

efficient trade, despite the associated cross-period cross-exchange price impact and despite

within-period price impact that is even higher than in the static model. We do not solve

for an equilibrium of the dynamic model for an arbitrary number E of exchanges, given

the difficult-to-solve infinite regress of beliefs about beliefs concerning the aggregate asset
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inventory of strategic traders. Rather than addressing equilibria for general E, we instead

construct an equilibrium for a specific number E of exchanges with the property that the

associated equilibrium is perfect Bayesian and implements efficient trade. This equilibrium is

tractable because efficient trade dramatically simplifies the inference problem of each trader,

given that the sum of exchange prices perfectly reveals the aggregate inventory at the end

of each trading date. We find that the efficient number of exchanges is invariant to trading

frequency, and is the same as that of the static model.

The remainder of the paper is organized as follows. Section 2 provides additional back-

ground on exchange market fragmentation and related research. Section 3 gives the setup of

the most basic version of our model. Section 4 characterizes properties of the equilibrium.

Section 5 presents the implications of fragmentation on price impact, allocative efficiency,

and price informativeness. Section 6 studies a formulation of the model in which traders

observe the aggregate asset endowment before order submission. Section 8 summarizes the

results of various model extensions. Section 7 solves for the efficient number of exchanges

in a dynamic formulation of the model with cross-period cross-exchange inference. Section

9 offers some concluding remarks and discusses some potentially important effects that are

not captured by our model. Appendices contain proofs and model extensions.

2 Background

We focus in this paper on “visible fragmentation,” that is, fragmentation across different

lit exchanges (meaning trade venues at which market-clearing prices are set), rather than

fragmentation between lit exchanges and size-discovery venues, which cross buy and sell

orders at prices that are set on lit exchanges (Körber, Linton, and Vogt, 2013; Zhu, 2014;

Degryse, De Jong, and van Kervel, 2015; Duffie and Zhu, 2017; Antill and Duffie, 2019).

In Europe and the U.S., exchange trading is highly fragmented. Budish, Lee, and Shim

(2019) document that in the U.S., as of early 2019, annual trade of about one trillion shares

is split across 13 U.S. exchanges, and that cross-exchange shares of total exchange-traded

volume are stable over time, with 5 exchanges each handling over 10 percent of total ex-

change volume. Essentially all equities trade on every exchange, with significant volumes of

each equity executed on multiple exchanges.2 Broadly speaking, similar patterns apply to

European financial markets (Gresse et al., 2012; Degryse, De Jong, and van Kervel, 2015;

Foucault and Menkveld, 2008). This high degree of trade fragmentation is in part a con-

sequence of regulations such as Regulation NMS in the US and MiFid II in Europe, which

encourage exchange entry and competition.

2Pagnotta and Philippon (2018) and Budish, Lee, and Shim (2019) display the striking facts graphically.
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There has been a lonstanding debate (Stoll, 2001) over whether fragmenting trade across

exchanges harms market efficiency, in various respects. Empirical findings have been mixed

(O’Hara and Ye, 2011; Gomber et al., 2017). Some researchers find that fragmentation has

generally been beneficial. For example, O’Hara and Ye (2011), using data from U.S. trade

reporting facilities, find that execution speeds are faster, transaction costs are lower, and

prices are more efficient when the market is more fragmented. Degryse, De Jong, and van

Kervel (2015) analyze a sample of Dutch stocks and measure the degree of visible fragmen-

tation. They find that liquidity, when aggregated over all lit trading venues, improves with

fragmentation. Foucault and Menkveld (2008) analyze Dutch stocks and arrive at a simi-

lar conclusion. Boehmer and Boehmer (2003) find evidence of improved liquidity when the

NYSE began trading ETFs that are also listed on the American Stock Exchange. Gresse

(2017), De Fontnouvelle, Fishe, and Harris (2003), Aitken, Chen, and Foley (2017), Hen-

gelbrock and Theissen (2009), Félez-Viñas (2017), and Spankowski, Wagener, and Burghof

(2012) generally find that visible fragmentation reduces bid-ask spreads.

Other research, however, suggests less beneficial effects of fragmentation. For exam-

ple, Bennett and Wei (2006) find that when equity trading migrated from Nasdaq to the

NYSE, where trade is more consolidated, there was a decrease in execution costs and an

improvement in price efficiency. Chung and Chuwonganant (2012) show that price impact

increased following the introduction of Regulation NMS. (In our model, as we have noted,

fragmentation indeed reduces market depth, yet increases allocative efficiency and overall

price informativeness.) Gentile and Fioravanti (2011) find that MiFID-induced fragmenta-

tion “does not have negative effects on liquidity, but it reduces price information efficiency.

Moreover, in some cases it leads primary stock exchanges to lose their leadership in the

price discovery process.” For small-firm equities, Gresse et al. (2012), Gresse (2017), and

Degryse, De Jong, and van Kervel (2015) find that market depth declines with sufficient

fragmentation, consistent with our theoretical results. Bernales et al. (2018) find that the

2009 consolidation of Euronext’s two distinct order books for the same equities was followed

by a reduction in bid-offer spreads. Haslag and Ringgenberg (2016) find causal evidence that

although fragmentation reduces bid-offer spreads for the equities of large firms, the opposite

applies to small firms.

While the empirical evidence regarding the implications of fragmentation are mixed, most

of the theoretical literature has shown that visible fragmentation is harmful. For example,

Mendelson (1987) shows that fragmentation may isolate individuals for whom there are

mutually beneficial trades, because they are located at different venues. Chowdhry and

Nanda (1991) show that adverse selection caused by asymmetric information worsens as

markets fragment. Baldauf and Mollner (2020) find that welfare is harmed by the ability of
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fast traders to snipe across fragmented markets.

Of the few theory papers showing that fragmentation may be beneficial, perhaps the

closest to ours is Malamud and Rostek (2017). As in our model, they consider a multi-

exchange demand submission game in which each exchange operates a double auction. They

show that, in certain settings, when agents’ risk preferences are sufficiently heterogeneous,

fragmented markets can produce outcomes that are welfare superior to centralized markets.

Crucially, however, they assume that agents are able to submit demand schedules to each

exchange that are contingent on the realization of prices on all exchanges. The channel by

which fragmentation is beneficial in our model is not related to that of Malamud and Rostek

(2017), and does not rely on heterogeneous risk aversion or cross-exchange contingent order

mechanisms, which are extremely rare in practice (Wittwer, 2020).

Of the theoretical papers mentioned, the majority assume that traders are restricted to

trade on a strict subset of all trading venues. For example, Pagano (1989) shows that frag-

mented markets are less stable, in that traders tend to concentrate at a single market venue,

at which liquidity is greatest. However, regulations promoting exchange competition may

foster fragmentation. If traders are strategic about their price impacts it seems natural to

assume they are aware of the option to trade on multiple exchanges simultaneously. The

costs of order splitting are economically small (Budish, Lee, and Shim, 2019). So-called

Smart Order Routing Technology makes order splitting convenient and practical (Gomber

et al., 2016). In our model, strategic traders frictionlessly trade on all exchanges. Empiri-

cal research (Malinova and Park, 2019; Menkveld, 2008; Chakravarty et al., 2012; Gomber

et al., 2016) finds evidence that some investors strategically split their orders across multiple

exchanges, and also between exchanges and size-discovery venues such as dark pools.

Methodologically, our model contributes to the literature on multi-auction demand-

function submission games, including work by Wilson (1979), Klemperer and Meyer (1989),

and Malamud and Rostek (2017). Within this literature, our paper, like prior work by Wit-

twer (2020) and a contemporaneous paper by Rostek and Yoon (2020), addresses markets

with multiple exchanges. While Wittwer (2020) and Rostek and Yoon (2020) focus on the

welfare implications of connecting exchanges through the ability to submit orders contingent

on cross-exchange prices, we consider only the common case in practice of “disconnected

markets.” As opposed to Wittwer (2020) and Rostek and Yoon (2020), we focus on the

implications for allocative efficiency and price informativeness of increasing the number of

exchanges (fragmentation), and we include a dynamic analysis that captures the implications

of cross-time cross-exchange price impact while still showing that enough fragmentation can

achieve allocative efficiency.

Since the work of Hamilton (1979), the literature has explored the key tension between
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the benefit of fragmentation associated with increased competition between exchanges and

between specialists, which drives down bid-offer spreads and trading fees, as suggested by the

theory of Hall and Rust (2003), versus the cost of fragmentation associated with decreased

market depth.3 Although fragmentation does indeed reduce market depth in our model,

consistent with earlier work, we believe that we are the first to point out the benefit of

fragmentation associated with increased order aggressiveness, arising from the ability of

strategic traders to shield orders on a given exchange from price impacts incurred on other

exchanges.

3 Baseline Model

This section presents the setup of our baseline model. All primitive random variables are

defined on a complete probability space, (Ω,F ,P). There is a single asset with a payoff,

denoted π, that is a finite-variance random variable with mean µπ.

We model a market whose agents, called “traders,” are of two types: “liquidity” and

“strategic.” For notational simplicity, we let N denote both the finite set of strategic traders

and its cardinality, which is assumed to be at least 3. The only primitive information

available to strategic trader i is the trader’s own endowment of the asset, Xi ∼ N(0, σ2
X).

We assume that endowments are i.i.d across traders.

Trade of the asset takes place in a single period on each of a finite number of identical

exchanges. For notational simplicity, we let E denote both the set and number of exchanges.

Each exchange runs a double auction mechanism. Strategic trader i submits a measurable

demand schedule fie : R2 → R to exchange e specifying the quantity fie(Xi, p) of the asset

demanded by trader i at any given price p ∈ R on exchange e. We emphasize that the demand

schedule submitted to a given exchange cannot depend on prices or any other information

emanating from the other exchanges. A demand schedule can be viewed as a package of

limit orders, each of which is an offer to purchase or sell a given amount of the asset at a

given price.4 Liquidity traders collectively submit an exogenously given quantity of market

orders to exchange e denoted Qe ∼ N(0, σ2
Q/E).

We assume that the supply of market orders is i.i.d across exchanges and that {Xi | i ∈
N}, {Qe | e ∈ E}, and π are independent. We relax these distributional assumptions in

Section 6 and in extensions considered in the Appendix H. A useful interpretation of the

3For a recent empirical contribution exploring this tradeoff, see Haslag and Ringgenberg (2016).
4In this sense, f(Xi, p), if positive, is the aggregate quantity of the limit orders to buy at a price of p

or higher, and if negative is the aggregate quantity of the limit orders to sell at price of p or lower. The
space of linear combinations of limit orders is dense, in the sense of Brown and Ross (1991), in the space of
monotone demand functions.
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above assumptions on liquidity trade is that there is a large number of liquidity traders,

independent of the number of exchanges in operation, who are spread evenly across exchanges

and trade independently of one another.

Given a collection f = {fie | i ∈ N, e ∈ E} of demand schedules, the price on exchange e,

if it exists, is a solution5 pfe to the market-clearing condition∑
i∈N

fie(Xi, p
f
e ) = Qe. (1)

If there does not exist a unique market clearing price, we assume that no trades are executed.

We restrict attention to equilibria consisting of demand schedules with the property that pfe

is uniquely determined.6 Based on (1), trader i is able to determine the impact of his or

her own demand on the market-clearing price given the conjectured demand schedules of the

other traders.

The preferences of the strategic traders are quasi-linear in cash compensation with a

quadratic holding cost. Specifically, given a collection f = {fie | i ∈ N, e ∈ E} of demand

schedules the associated payoff of trader i is

Ui(f) =

(
Xi +

∑
e

fie(Xi, p
f
e )

)
π − b

(
Xi +

∑
e

fie(Xi, p
f
e )

)2

−
∑
e

pfefie,

for some b > 0. The quadratic term represents a cost for bearing the risk or other costs

associated with holding a post-trade position in the asset. Preferences of this form are

popular in the market microstructure literature (Vives, 2011; Rostek and Weretka, 2012; Du

and Zhu, 2017; Sannikov and Skrzypacz, 2016). Sannikov and Skrzypacz (2016) provide a

microfoundation.

An equilibrium is defined as a collection f = {fie | i ∈ N, e ∈ E} of demand schedules

with the property that for each strategic trader i the demand schedules fi = {fie | e ∈ E}
solve

sup
f̂

E[Ui(f̂ , f−i)],

where as usual f−i denotes the collection {fj | j 6= i} of other traders’ demand schedules.

The model we have specified is a typical demand-function submission game in the sense of

Wilson (1979) and Klemperer and Meyer (1989), extended to allow for multiple exchanges.

Multi-exchange demand function submission games were earlier analyzed by Malamud and

5That is, pfe is a random variable such that for each state ω ∈ Ω,
∑

i∈N fie(p
f
e (ω), Xi(ω)) = Qe(ω).

6For this, it suffices that, for each x ∈ RN , the aggregate demand function p 7→
∑

i fie(p, xi), which is
monotone, is strictly monotone, continuous, and unbounded below and above.
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Rostek (2017) and Wittwer (2020).

We conclude this section with an interpretation of the distinction between strategic and

liquidity traders. A strategic trader may be viewed as an agent who is sophisticated, in-

ternalizes price impact, is able to easily split orders across multiple trading venues, has

a relatively low aversion to owning assets, and has a relatively large initial endowment of

the asset. A liquidity trader, on the other hand, may be viewed as an agent who is not

sophisticated about price impacts, has high aversion to holding assets (thus exercising no

discretion in the liquidation of the assets), and has a small initial asset holding, and who

therefore submits market orders with no price sensitivity. Liquidity traders are a typical

modeling device for settings such as ours in which one wishes to avoid perfect inference of

fundamental information from price observations. In our case, the fundamental information

to be inferred does not concern asset payoffs but rather the aggregate endowment of strate-

gic traders. Traders have payoff relevant private information about their own endowments

but no private information about asset payoffs. We will show that our main results are not

driven by the effect of “donations” from liquidity traders to strategic traders.

4 A Symmetric Affine Equilibrium

We can prove the existence and uniqueness of a symmetric affine equilibrium defined by

demand schedules of the form

fie(p,Xi) = ∆E − αEXi − ζEp, (2)

for constants ∆E, αE, and ζE that do not depend on the trader or particular exchange, but

do depend on the number E of exchanges.

Using (1) it can be shown that the slope of the inverse residual supply curve facing each

agent in each exchange is equal to

ΛE ≡
1

(N − 1)ζE
(3)

which we refer to as inverse market depth, or simply as “price impact”. Each strategic

trader is aware that by deviating from the equilibrium demand schedule and demanding

an additional unit on a given exchange, the trader will increase the market-clearing price

on that exchange by ΛE. Price impact is a perceived cost to each strategic trader, but is

not a social cost because the payment incurred by any trader is received by another. As

emphasized by Vayanos (1999), Rostek and Weretka (2015), and Du and Zhu (2017), the
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strategic avoidance of price impact through the “shading” of demand schedules is socially

costly because it reduces the total gains from the beneficial reallocation of the asset.

By using the form of the demand schedules in (2) we can compute that the final asset

position of strategic trader i is

(1− EαE)Xi + EαE

∑
j∈N Xj

N
+

∑
e∈E Qe

N
. (4)

Generically in the parameters of the model, the equilibrium allocation is inefficient. Given

the non-discretionary liquidation
∑

e∈E Qe by liquidity traders, the efficient allocation is one

in which each strategic trader receives an equal share of the aggregate supply of the asset,

which is

q =
1

N

(∑
e∈E

Qe +
∑
i∈N

Xi

)
.

Inspecting (4), this efficient sharing rule corresponds to the case of EαE = 1. By Jensen’s

inequality, this produces the efficient allocation because traders have symmetric convex hold-

ing costs. Since preferences are quasi-linear in cash compensation, this is also the welfare-

maximizing allocation, in that any other allocation would be strictly Pareto dominated by

this efficient sharing rule, after allowing voluntary initial side payments.

The equilibrium allocation defined by (4) becomes less efficient the farther is EαE from

1. This is because replacing EαE in (4) with a number farther from 1 results in a mean-

preserving spread in the cross-sectional distribution of the asset to strategic traders, state

by state. Jensen’s inequality, applied cross-sectionally in each state ω ∈ Ω, then implies an

increase in the sum across traders of quadratic holding costs.

The following theorem collects several properties of symmetric affine equilibria. Of pri-

mary interest is the property that in the presence of non-trivial liquidity trade, the alloca-

tion becomes more efficient as market fragmentation E increases, up to the point at which

EαE = 1, and then becomes increasingly less efficient. We will explore this issue in more

depth in Section 5. Our proof of the theorem, found in the Appendix B, applies the calcu-

lus of variations to verify that a particular set of candidate equilibrium demand coefficients

(∆E, αE, ζE) does in fact uniquely correspond to an equilibrium.

Theorem 1. For each positive integer number E of exchanges, there exists a unique sym-

metric affine equilibrium. The associated demand-function coefficients (∆E, αE, ζE) form the

unique solution to appendix equations (34), (35), and (36). Moreover:

9
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1. The market-clearing price on exchange e is

p∗e =
N − 1

N
ΛE

[
N∆E −Qe − αE

∑
i∈N

Xi

]
. (5)

2. The associated price-impact coefficient is

ΛE =
2b(1 + γE(E − 1))

N − 2
, (6)

where

γE =
Eα2

Eσ
2
X(N − 1)

Eα2
Eσ

2
X(N − 1) + σ2

Q

(7)

is the conditional correlation between prices in any two distinct exchanges e and e′ from

the perspective of any strategic trader i, given Xi.

3. The final asset position of strategic trader i is given by (4).

4. If there is no liquidity trading, in that σ2
Q = 0, then the equilibrium allocation does not

depend on the number E of exchanges.

5. If E = 1 or σ2
Q = 0, then the final asset position of strategic trader i is

Λ1

Λ1 + 2b
Xi +

2b

Λ1 + 2b

1

N

∑
j∈N

Xj +

∑
e∈E Qe

N
,

where Λ1 = 2b/(N − 2).

6. If σ2
Q > 0, then EαE is strictly monotone increasing in E and converges to N/(N − 1).

It follows in this case that a market with only one exchange is strictly dominated, from

the viewpoint of allocative efficiency, by a market with any larger number of exchanges.

Part 5 of Theorem 1 implies that with a single exchange, the fraction of the endowment

retained by a trader is increasing in price impact, Λ1. In a centralized market, price impact

avoidance is the only source of allocative inefficiency. As we have described and will later

elaborate, the effect of price impact avoidance on allocative efficiency can be mitigated by

increasing the degree of market fragmentation. In the next section, we analyze the forces

behind this and other effects of market fragmentation. But, as stated in part 6 of Theorem

1, any degree of fragmentation is socially preferred to concentrating all trade on a single

exchange.

10
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5 The Effects of Fragmentation

We present several predictions of our model, beginning first with the effects of fragmentation

on price impact.

5.1 Price impact

Part 2 of Theorem 1 provides the equilibrium relationship between price impact and the

correlation between exchange prices. This relationship reflects the effect on trade demand

of cross-exchange inference from prices. The quantity purchased by trader i on exchange e

at a given pe, fie(Xi, pe), depends in part on the expectation of the quantities that trader i

will execute on the other exchanges, conditional on Xi and pe.

To illustrate, suppose for example that in state ω ∈ Ω trader i is a buyer of the asset at

the equilibrium price in exchange e. If the observed price outcome pe(ω) was lowered, trader

i would assign a higher conditional likelihood to lower prices on the other exchanges because

strategic traders’ demands are positively correlated on any two exchanges which implies a

positive cross-exchange price correlation, γE. But trader i submits demands to the other

exchanges before observing pe. Thus, the lower is pe(ω) the higher is the conditional expected

quantity executed by trader i on the other exchanges. If pe(ω) is lowered, the marginal

utility of trader i for purchasing a unit on exchange e would decline. Due to cross-exchange

inference, the quantity trader i optimally purchases on exchange e in response to a decrease

in price pe(ω) is smaller relative to if there was no cross-exchange correlation. Analogous

reasoning can be applied to show that due to cross-exchange inference, the quantity trader

i optimally purchases on exchange e in response to an increase in price pe(ω) decreases

relative to if there was no cross-exchange correlation. Overall, the cross-exchange price

inference channel reduces the steepness (absolute slope) of the demand schedule of trader

on each exchange with respect to price. The result, by (3), is that price impact rises. Since

this channel is not present when there is a single exchange, price impact is always higher in

a fragmented market than in a centralized market.

We now discuss comparative static results describing the effects of changes in the vari-

ance σ2
Q of liquidity trade demand and the number E of exchanges on price impact. As

σ2
Q increases, prices in different exchanges becomes less correlated, so price impact declines,

eventually converging to that of a single exchange market as σ2
Q tends to infinity. Thus, price

impact is lower in markets with noisier liquidity trader supply because the cross-exchange in-

ference channel is weaker. The following proposition characterizes how price impact changes

as the number of exchanges increases holding fixed all other model parameters.

11
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Proposition 1. The price-impact coefficient ΛE is strictly monotone increasing in the num-

ber E of exchanges. If the variance σ2
Q of liquidity trade demand is zero, then limE→∞ ΛE =

∞. If σ2
Q > 0, then

lim
E→∞

ΛE =
2b

N − 2

(
1 +

N2σ2
X

(N − 1)σ2
Q

)
,

and γE declines strictly monotonically to zero as E →∞.

Proposition 1 states that, with greater market fragmentation, price impact is higher and

(in the presence of nontrivial liquidity trade), prices are less correlated. Without liquidity

trade (σ2
Q = 0), price impact diverges as the number of exchanges diverges, because γE is

equal to one. But with liquidity trade (σ2
Q > 0) price impact converges to a finite value.

Because price impact depends on γE(E − 1), this follows from the fact that γE declines at

a rate proportional to 1
E

. The intuition is that as the number of exchanges increases, the

expected quantity traded on a given exchange decays at rate 1
E

, which in turn causes the

variability in prices due to strategic traders’ orders to decay at a rate proportional to 1
E2 .

Since the variability in prices due to exchange-specific liquidity trade is σ2
Q/E, this implies

that γE must decline at the rate 1
E

, so that price impact converges.

Figure 1 illustrates the relationship between price impact and the number of exchanges,

for different cases of the number N of strategic traders. As illustrated, price impact converges

faster when there are more strategic traders. For instance, consider the case of b = 1/2,

N = 5 and E = 100. Without liquidity trade, the price impact is ΛE = 33. However, with

σ2
Q > 0, and strategic traders whose endowments are 10 times more uncertain (in terms of

variance) than aggregate liquidity trader supply (in that σ2
X/σ

2
Q = 10), price impact drops

to approximately 10. As σ2
X/σ

2
Q falls below 10, γE is reduced and, because of this, price

impact is further reduced.

5.2 Allocative Efficiency

We have just shown that price impact is higher in more fragmented markets. However, by

Theorem 1, when there is no liquidity trade (σ2
Q = 0), even though price impact diverges

as E tends to infinity, total trade aggressiveness is unaffected and the equilibrium alloca-

tion remains constant. Moreover, when σ2
Q > 0, even though price impact increases with

fragmentation, total trade aggressiveness actually increases. One might have expected that

the rise in price impact would lead to a reduction in trade aggressiveness and thus lower

allocative efficiency, but this is not the case. We turn now to a resolution of this superficial

paradox.

As fragmentation rises, price impact increases, but traders can better evade the overall
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Figure 1: Variation of price impact ΛE with the number E of exchanges, for various cases of N , the
number of strategic traders. In all cases, the variance-aversion coefficient is b = 1/2 and the ratio σ2

X/σ
2
Q of

the variance of strategic-trader asset endowment to total liquidity trade quantity is 10.

cost of price impact by shredding their orders across exchanges. This is because traders bear

the cost of price impact on a given exchange only to the extent of the trades executed on

that exchange. By order splitting, a trader can shield an order on a given exchange from

the price impact of units executed on the other exchanges. When there are more exchanges,

the purchase of an additional unit on a given exchange affects a smaller fraction of the

total quantity traded. When there is no liquidity trade (σ2
Q = 0) this effect exactly offsets

the rise in price impact, leaving the overall agressiveness of a trader’s demand invariant

to the number of exchanges. When σ2
Q > 0 price impact does not rise quickly enough

to offset the effect of increased aggressiveness through order splitting. At low levels of

fragmentation, this increase in trade aggressiveness is beneficial for allocative efficiency. But

when markets become sufficiently fragmented, the incremental aggressiveness is inefficient,

in that EαE increases past the point of efficiency, at which EαE = 1 (up to N
N−1

). We

emphasize, however, that trade never becomes so aggressive that fragmentation leads to a

loss of allocative efficiency relative to that of a market with a single exchange.

By equation (4), the number of exchanges that maximizes allocative efficiency is that for

which EαE is closest to 1.

Proposition 2. Suppose σ2
Q > 0. Let

E∗ = 2 +
2

N − 2
+
N − 1

N − 2

Nσ2
X

σ2
Q

.
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If E∗ is an integer, the unique symmetric affine equilibrium for a market with E∗ exchanges

achieves an efficient allocation of the asset, by allocating an equal amount q̄ of the asset to

each strategic trader. In general, the number of exchanges that maximizes allocative efficiency

is either bE∗c or dE∗e.

By Proposition 2, the optimal number of exchanges is finite, is at least 2, and depends

crucially on the ratio of the variance of the endowment of strategic traders to the variance

of the total amount of liquidity trade, σ2
X/σ

2
Q. This ratio determines γE, as seen in equation

(7), which in turn determines price impact. As σ2
X/σ

2
Q rises, price impact is higher and more

fragmentation is needed to offset the adverse effect of price impact with the beneficial effect

of increasing the number of exchanges over which strategic traders can split their orders.

It is perhaps surprising that the socially optimal number of exchanges is finite. The

intuition associated with order splitting might suggest that inefficiency due to price impact

avoidance should only disappear in the limit as the number of exchanges tends to infinity.

Only as this limit is approached do agents trade a negligible quantity on any one exchange,

so that the marginal unit traded affects the price only negligibly. It turns out, however,

that fragmentation introduces a different inefficiency. At the point in time at which traders

submit demands to a given exchange, they are unaware of the quantities they will ultimately

purchase on other exchanges. Moreover, traders are asymmetrically informed about trading

opportunities on the other exchanges because they have different endowments, and equilib-

rium prices depend on the aggregate endowment. This is a force leading agents to trade

more aggressively in fragmented markets that is eventually adverse to efficiency, and that

has no counterpart in a centralized market.

Figure 2 illustrates the results of this section. As shown, EαE is strictly increasing in

fragmentation and can exceed the socially efficient level. The socially efficient number of

exchanges increases with σ2
X/σ

2
Q.

5.3 Price Informativeness

Our finding that trade aggressiveness increases with market fragmentation has natural im-

plications for price informativeness. By price informativeness, we mean the degree to which

prices reveal information about the average endowment X =
∑

i∈N Xi/N of strategic traders.

This notion is especially relevant when viewing our model as though a snapshot of a dynamic

market in which liquidity trade is serially uncorrelated and the aggregate strategic endow-

ment is a persistent markov process. In such a setting, the aggregate endowment of strategic

traders is a sufficient statistic for inference regarding future prices and future aggregate

endowments.
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Figure 2: We plot equilibrium allocative inefficiency as measured by | 1 − EαE | against the number of
exchanges for different values of the ratio σ2

X/σ
2
Q of the variance of the endowment of a strategic trader to

the variance of the total amount of liquidity trade. In all cases, the number N of strategic traders is 10.
Allocative inefficiency, |1− EαE |, does not depend on the variance-aversion coefficient b.

Because of the joint normality of prices and endowments in our model, the conditional

variance of X given exchange prices is an unambiguous metric for price informativeness. Our

results are summarized in Proposition 3.

Proposition 3. Suppose that the variance σ2
Q of liquidity trade is not zero. Then:

1. For any exchange e, var(X̄ | p∗e) is strictly monotone increasing in the number E of

exchanges and converges to var(X̄) as E goes to ∞.

2. var(X̄ | {p∗e : e ∈ E}) is strictly monotone decreasing in E.

In words, Proposition 3 shows that the informativeness of the price on any individual

exchange worsens with fragmentation but overall price informativeness, taking into consid-

eration information from all exchange prices, improves.

6 The Case of Observable Aggregate Endowment

In this section we present a simplified version of the model in which the aggregate endow-

ment of strategic traders is publicly observable in order to demonstrate the welfare benefits

of fragmentation in a setting that does not require liquidity traders or Gaussian Xe and

Qe. Under the assumption of public aggregate endowment the equilibrium price in a given
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exchange is a linear combination of the aggregate endowment and exchange-specific liquidity

trade. As a result, conditional on X, prices in any two exchanges are uncorrelated so that

traders do not need to make cross-exchange price inferences. This allows us to shut down the

cross-exchange inference channel and study the welfare benefits of order splitting in isolation.

We retain the model setup of Section 3 with the exceptions that, for any exchange e and

any trader i, (a) neither Qe nor Xi is necessarily normally distributed though Qe still has

mean zero and (b) trader i observes7 the private endowment Xi and the average endowment

X. The following theorem characterizes the equilibrium of this model.

Theorem 2. For each number E of exchanges, there exists a symmetric affine equilibrium.

If, in addition, for each e, Qe has full support on R, then the equilibrium is unique in the

class of symmetric affine equilibria and has the following properties.

1. The price-impact coefficient ΛE = 2b/(N − 2) does not depend on the number E of

exchanges.

2. The price on exchange e is

p∗e = −2b

(
X̄ +

Qe

N − 2

N − 1

N

)
+ µπ.

3. The final asset position of trader i is

ΛE

ΛE + 2bE
Xi +

2bE

ΛE + 2bE
X̄ +

∑
e∈E Qe

N
.

4. The total expected equilibrium payment −E
[∑

e∈E p
∗
eQe

]
of liquidity traders is invariant

to the number E of exchanges and equal to

var(
∑

e∈E Qe)

N − 2

N − 1

N
.

5. Allocative efficiency is increasing in the number E of exchanges. As E diverges, the

allocation converges to the efficient allocation, q̄ to each strategic trader.

In this setting, price impact is a constant that does not depend on the level of fragmen-

tation because there is no cross-exchange inference effect. By part 3 of the theorem, more

fragmentation is unambiguously beneficial in this setting. In the limit as E tends to infinity,

the fully efficient allocation obtains. The benefits of fragmentation arise entirely from the

7That is, the demand submitted by trader i on exchange e is a measurable function fie : R3 → R that,
at any price p, determines the demand fie(Xi,

∑
j∈N Xj , p).
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beneficial effects of increased order aggressiveness associated with order splitting. The above

equilibrium exists even when there is no liquidity trade, though the presence of liquidity

trade is needed for equilibrium uniqueness. Even in the presence of liquidity traders, the

expected payment of liquidity traders to strategic traders is invariant to market fragmenta-

tion. Thus the beneficial effect of fragmentation is not related to the exploitation of liquidity

traders by strategic traders.8 In the model of Section 3, the liquidity traders were only a

convenient modeling device for breaking the perfect correlation in exchange prices. Budish,

Cramton, and Shim (2015) note that, at a sufficiently high sampling frequency, the prices of

similar assets on different exchanges are virtually uncorrelated, empirically.

7 A Dynamic Model

One might guess that market fragmentation, though capable of alleviating within-period

price impact, would not be as effective in a dynamic setting in supporting allocative effi-

ciency, given the strategic avoidance of cross-time cross-exchange price impact. That is,

when submitting a trade on exchange e at period t, a trader has no concern about adversely

influencing the price on another exchange in the same period, but does internalize the result-

ing impact on the prices on all exchanges in period t+1, given the inference about aggregate

inventory that is drawn by other traders from observing pet. Nevertheless, in this section, we

show that market fragmentation allows efficient trade even in a dynamic setting, despite the

associated cross-period cross-exchange price impact and higher within-period price impact.

Moreover, the efficient number of exchanges is invariant to trading frequency, and is the

same as that of the static model.

7.1 Setup

Trade occurs at each of a discrete set of times separated by some duration ∆. A positive

integer t denotes the t-th trading date. As in the baseline static model, E exchanges operate

separate double auctions for a single asset at each trade time. The asset pays πt at date

t, post-trade, where π1, π2, . . . are independent with common mean µπ∆. Liquidity traders

supply a Gaussian quantity Qet of the asset to exchange e at trade date t, independent

8In the setting of Section 5, our results are not driven by donations from liquidity traders, but liquidity
traders do pay more in expectation as fragmentation increases. In the model of Section 3, the total expected
payment to strategic traders is

E

(∑
e∈E

p∗eQe

)
=
N − 1

N
ΛEσ

2
Q. (8)

which is strictly increasing in E since ΛE is strictly increasing.
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across exchanges and dates with common mean zero and variance σ2
Q∆. At date t, trader

i receives a Gaussian inventory shock εit, prior to trade, that has mean zero and variance

σ2
ε∆, independent across trading dates and traders. The inventory shocks, liquidity trader

supplies, and the asset payoffs are independent.

The post-trade inventory of trader i at period t is

Xit = Xi,t−1 +
∑
e∈E

qie,t−1 + εit, (9)

where qiet is the quantity purchased by trader i on exchange e at period t. For t = 0, we set

Xi,t−1 +
∑

e∈E qie,t−1 = 0.

During the time interval [t∆, (t + 1)∆), the net payoff to trader i, discounted to the

beginning of the interval at the rate r > 0, is the total initial payoff from asset holdings, net

of asset purchase costs, plus discounted inventory holding costs, given by

Fit(qit) = πt

(
Xit +

∑
e∈E

qiet

)
−
∑
e∈E

petqiet −
∫ ∆

0

e−rsb̃

(
Xit +

∑
e∈E

qiet

)2

ds

= πt

(
Xit +

∑
e∈E

qiet

)
−
∑
e∈E

petqiet − b

(
Xit +

∑
e∈E

qiet

)2

, (10)

where qit = (qi1t, ..., qiEt) and

b = b̃
1− e−r∆

r
.

Our formulation is in the spirit of Vayanos (1999), differing mainly in that we allow

multiple exchanges, introduce liquidity traders, and assume a different inventory preference

model. For tractability, a significant part of the analysis in Vayanos (1999) focuses on the

case in which σ2
ε tends to zero. Our analysis applies to arbitrary σ2

ε .

We do not solve for an equilibrium of the model for an arbitrary number E of exchanges

because of the problem of infinite regress of beliefs described in the conclusion of Vayanos

(1999). In the presence of liquidity traders, strategic traders choose their trades based on

their beliefs about the aggregate market asset inventory, as well as beliefs about other traders’

beliefs about aggregate inventory, beliefs about the beliefs of other traders about their own

beliefs, and so on, causing the state space to explode. To our knowledge, there does not exist

a dynamic trading model with double auctions in which traders filter information from prices

so as to discern strategic trading from liquidity trading. Rather than addressing equilibria for

general E, we instead construct an equilibrium for a specific number E of exchanges with the

property that the associated equilibrium is perfect Bayesian and implements efficient trade.
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This equilibrium is tractable because efficient trade dramatically simplifies the inference

problem of each trader, given that the sum of exchange prices perfectly reveals the aggregate

inventory at the end of each trading date.

7.2 An Equilibrium with Efficient Trade

In this section we briefly sketch the derivation of an efficient equilibrium and characterize

its key properties, including the associated number E of exchanges. A formal derivation is

given in Appendix E.

To start, we conjecture that there exists a number E of exchanges such that in equilibrium

each trader i submits the demand schedule to exchange e given by

fiet(Xit, pet, Bt) = − 1

E
Xit − ζpet + ρBt + χ, (11)

for some constants ζ, ρ, and χ to be determined, where Bt is defined recursively by B0 = 0

and

Bt = NEρBt−1 +NEχ− ζN
∑
e∈E

pe,t−1. (12)

We later interpret Bt as a variable related to trader beliefs about the aggregate supply of

the asset. Given the conjectured form (11) of the demand function, market clearing implies

that the equilibrium price on exchange e is

pet =
NρBt +Nχ−Qet − 1

E

∑
j∈N Xjt

ζN
. (13)

The post-trade aggregate inventory of strategic traders at date t is

Wt =
∑
j∈N

Xj,t +
∑
e∈E

Qe,t.

Substituting (13) into (11) and summing across e ∈ E, we verify that the final inventory of

trader i at date t is efficient and equal to Wt/N . By substituting (13) into (12) we see that

along the equilibrium path, Bt is equal to Wt−1. However, if any given trader has deviated

from the equilibrium strategy prior to date t, it is possible that Bt 6= Wt−1. Nonetheless,

even if traders had deviated prior to date t, any trader who has not deviated must believe

that Wt−1 = Bt with probability 1 because the Gaussian liquidity trading/inventory shocks

ensure that deviations by strategic traders are undetectable. Thus, any given trader i must

believe that any other trader j believes that Wt−1 = Bt, and so on with respect to higher-

order beliefs. Thus, Bt is a sufficient statistic for higher-order beliefs. This allows for a
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tractable equilibrium construction.

We now provide intuition for the role of the key state variable Bt in traders’ demand

schedules. If trader j follows the equilibrium strategy, a substitution of (12) into (11) reveals

that

Xj,t−1 +
∑
e∈E

qie,t−1 =
1

N
Bt.

Summing across j 6= i,

∑
j 6=i

(
Xj,t−1 +

∑
e∈E

qje,t−1

)
=
N − 1

N
Bt.

Thus for trader i, Bt is a sufficient statistic for the total post-trade inventory of other traders

at date t − 1. This in turn implies that Bt is sufficient information for trader i to conduct

inference about the residual supply that he will face on each of the exchanges at time t. This

explains the role of Bt in the demand schedule (11).

In a perfect Bayesian equilibrium, any given trader i, conjecturing that other traders

submit demand functions according to (11), solves the stochastic control problem

sup
{fiet}e,t

E

[
∞∑
t=0

e−r∆tFit(qit)

∣∣∣∣ Xi0

]
, (14)

with demands that are measurable9 with respect to the history of inventory levels {Xis}s≤t,
trades {qies}e∈E,s<t, and prices {pes}e∈E,s<t, and satisfy10

lim
t→∞

e−r∆tE
(
X2
it

)
= 0, (15)

ruling out “Ponzi schemes” that are based on explosive growth in asset positions. An equi-

librium is characterized by optimal demands determined by the same function fiet( · ) of

(11).

In solving the optimization problem (14), trader i correctly considers the impacts of

his or her trades on current and future prices. These impacts occur directly through the

formation of the clearing price on the exchange on which an order is submitted and also

through the recognition by trader i that other traders draw inference from market prices

about the aggregate market supply of the asset, which affects future prices at all exchanges.

This impact occurs through the “beliefs” state variable Bt, through the dynamic equation

9Although the objective function involves second moments of Xit, we allow strategies that do not have
finite second moments and show that any such strategy is strictly suboptimal.

10This condition is implied by the square-integrability condition E
[∑∞

t=0 e
−r∆t

∑
e∈E q2

iet

]
<∞.

20

Electronic copy available at: https://ssrn.com/abstract=3542574



(12).

In Appendix E, we use the Bellman principle of optimality to explicitly solve for the

required number E of exchanges and for the equilibrum demand coefficients ρ, ζ, and χ. We

find that

E = 2 +
2

N − 2
+
N(N − 1)

N − 2

σ2
ε

σ2
Q

(16)

ρ = − 1

NE
(17)

ζ =
N − 2

2b(N − 1)(1 + Γ(E − 1))
− e−r∆

bE
, (18)

χ =
µπ∆

1− e−r∆
ζ, (19)

where

Γ =
(N − 1)σ2

ε

(N − 1)σ2
ε + Eσ2

Q

.

From the demand schedule (11), the within-period price impact on any exchange is

1

ζ(N − 1)
=

2b(1 + Γ(E − 1))

N − 2− e−r∆ 2N−2
E

(1 + Γ(E − 1))
, (20)

which is higher than in the associated static model. We also compute that cross-period

cross-exchange price impact is

dpe,t+1

dqjkt
= −Nρ 1

(N − 1)ζ
=

1

E

2b(1 + Γ(E − 1))

N − 2− e−r∆ 2N−2
E

(1 + Γ(E − 1))
, (21)

which is a fraction 1/E of the within-period within-exchange price impact. (The differential

notation shown for this price sensitivity involves a minor abuse of notation.) The marginal

impact of the quantity traded by any trader on any exchange on the sum of exchange prices

in the next time period is equal to the within-period within-exchange price impact.

7.3 Summary of Results

The following theorem summarizes the results of our analysis of the dynamic model.

Theorem 3. If

E = 2 +
2

N − 2
+
N(N − 1)

N − 2

σ2
ε

σ2
Q

is an integer, then there exists a perfect Bayesian equilibrium in symmetric affine demand

schedules for the dynamic market with E exchanges such that:
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1. Trade is allocatively efficient along the equilibrium path.

2. Traders submit the demand schedule given by (11), with ρ, ζ, and χ given by (17),

(18), and (19) respectively.

3. Beliefs about the aggregate market inventory evolve according to (12).

4. Trades on each exchange have nonzero price impact at each exchange in the next period

given by (21).

5. The within-period within-exchange price impact (20) is higher than that for the asso-

ciated static model.

In the equilibrium, by deviating, traders can manipulate other traders’ beliefs about the

aggregate market asset inventory. Following a one-shot deviation, trade returns to efficiency

in the next period, and beliefs become “corrected.”

Our analysis shows that in our dynamic model, as for the associated static model, a precise

and non-trivial amount of market fragmentation achieves allocative efficiency. Relative to

the static model, our dynamic model allows a clearer characterization of how fragmentation

improves price discovery. A weakness of our analysis of the dynamic setting is that, because of

the need to incorporate the infinite regress of beliefs about beliefs, we are able to characterize

equilibrium only for the number of exchanges that is associated with an efficient allocation.

A notable implication of Theorem 3 is that this efficient number of exchanges is invariant to

the frequency of trade and is identical to that of the static model. Though multiple periods

of trade increases price impact relative to the static model, this additional price impact

exacerbates the role of traders’ asymmetric information, which, as we saw in the static

model, leads to more aggressive order submission. This is so because traders rely on their

privately observed inventories to conduct inference that is relevant not only to current-period

trade prospects, but also to future-period trade prospects. This effect on trade aggressiveness

precisely offsets the effects of the rise in price impact on each exchange.

8 Discussion of Model Extensions

In this section we summarize the results of three extensions of the main model that are

provided in appendices.
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8.1 Endogenous Liquidity Trade, Exchange by Exchange

In our first model extension, found in Appendix F, liquidity traders, who are local to each

exchange and conduct no cross-exchange trade, choose the sizes of their trades. Liquidity

traders are assumed to have the same preferences as strategic traders, but may have a

different quadratic holding cost parameter, c, and may also be endowed with some quantity

of the asset prior to trade. Thus, the baseline model is equivalent to the case in which

c = ∞, in that liquidity traders liquidate their entire endowed positions as though without

discretion. Relaxing this baseline extreme assumption to the case of finite c, we find for

any positive integer E > 1, there exists a cutoff c such that if c > c, then a market with

1 < E ≤ E exchanges is welfare superior to a centralized market in that the expected sum

of all agents’ holding costs is lower.

8.2 Private information about asset payoff

In a second extension, found in Appendix G, agents have differing private information about

the asset’s final payoff. In this case, allocative efficiency is not necessarily improved by

fragmenting a centralized market. This is because fragmentation leads agents to trade more

aggressively for two reasons: not only to mitigate holding costs, but also to exploit payoff-

relevant private information. While the former motive leads fragmentation to improve al-

locative efficiency, as we demonstrated in Section 5, the latter effect can cause fragmentation

to reduce allocative efficiency. This is because the efficient allocation of the asset does not

depend on agents’ payoff-relevant private information. Whether fragmentation is beneficial

or harmful is shown to depend on the relative magnitudes of these two effects.

8.3 Correlated trade motives

In a third extension, found in Appendix H, we relax the assumption that the underlying

random variables (X1, . . . , XN , Q1 . . . , QE) are jointly independent. We retain the assump-

tion that these random variables are jointly Gaussian, but allow for an essentially arbitrary

covariance matrix, subject to the condition that the traders’ endowments X1, . . . , XN are

symmetrically distributed and that the liquidity-trade quantities Q1, . . . , QE are symmetri-

cally distributed.

If a strategic trader’s endowment Xi does not covary more negatively with aggregate

liquidity trader supply
∑

eQe than it covaries positively with the aggregate endowment∑
j Xj, there is an interior optimal level of fragmentation which, up to the integer constraint
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on E, achieves the efficient allocation.11

In this setting, however, an arbitrary level of market fragmentation need not, however,

coincide with an unambiguous improvement in allocative efficiency over a centralized market.

Whether this is so depends on the covariances of endowments. Under certain parameters,

agents may trade even more aggressively than they do in the baseline model, which we

have shown has the property that trade already becomes “too aggressive” for sufficiently

large E. Moreover, if a strategic trader’s endowment covaries more negatively with the

aggregate liquidity trader supply than it covaries positively with the aggregate endowment,

fragmentation is harmful. This is because the inefficiency associated with the inferior trading

technology associated with disconnected fragmented markets dominates the beneficial effect

of lowering the effect of strategic avoidance of price impact. This follows from the fact that,

ex ante, with this correlation structure, traders expect that residual supply on each exchange

is on average relatively favorable for offsetting their positions. This, however, leads to less

aggressive trade than is socially efficient since agents are less willing to trade large quantities

at unfavorable prices on any given exchange because they expect that prices on the other

exchanges will be more favorable.

9 Concluding Discussion

We have presented a simple market setting in which fragmentation of trade across multi-

ple exchanges improves allocative efficiency and price informativeness. Our main marginal

contributions are (a) a newly identified channel by which cross-exchange price inference ex-

acerbates price impact, and (b) a demonstration of the beneficial effects of cross-exchange

order-splitting on allocative efficiency and price informativeness. We find that although

fragmentation reduces market depth on any given exchange, this need not be a sign of wors-

ening overall liquidity or market inefficiency. We characterize the number of exchanges that

achieves allocative efficiency, and show that this “optimal” degree of fragmentation is in-

variant to the frequency of trade and indeed the same as that for the static version of the

model.

Our stylized model abstracts from many important practical considerations. We do not

consider some of the direct frictional costs of trade and order splitting, such as trading fees

and subsidies, minimum tick sizes, and bid-offer spreads, which are endogenous to market

structure, particularly through the role of competition among exchange operators, specialists,

and market makers (Baldauf and Mollner, 2019; Chao, Yao, and Ye, 2018; Colliard and

11Positive definiteness of the covariance matrix ensures that, for each i, Xi is positively correlated with∑
j∈N Xj .
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Foucault, 2012; Malinova and Park, 2019; Foucault and Menkveld, 2008; Chlistalla and Lutat,

2011; Clapham et al., 2019; Hengelbrock and Theissen, 2009; Parlour and Seppi, 2003). For

example, Foucault and Menkveld (2008) show that, with non-zero tick sizes, adding an

additional limit-order market increases market depth by allowing limit-order submitters to

jump the queue of posted orders on one exchange by posting orders on another exchange, due

to the absence of cross-exchange time-priority rules. Foley, Jarnecic, and Liu (2020) show

that liquidity providers increasingly fragment their activities amongst alternative venues,

attempting to jump long queues on larger venues by increasing submissions to venues with

short (or empty) queues. This reduces adverse selection costs faced on alternative venues and

helps explain the increase in fragmentation for jurisdictions with trade-through prohibitions.

We also do not consider the endogenous entry of exchanges, a common theme in the

literature going back to Glosten (1994), as reviewed by Pagnotta and Philippon (2018).

Our model does not capture the effect of high-frequency traders who can take advantage of

slight discrepancies in order execution times across different exchanges (Budish, Lee, and

Shim, 2019; Gresse et al., 2012; Pagnotta and Philippon, 2018). We also ignore the role of

trade-through rules such as Regulation NMS, which effectively forces all U.S. lit exchanges

to recognize the best bid or offer available across all order books in the market. While

Reg NMS has the effect of consolidating markets for small trades, trade-through rules do

not play a significant role in price-impact costs, which are only pertinent for large trades.

The inefficiencies associated with price-impact cost avoidance through order splitting are the

main concern in this paper.

Because we have abstracted from these and other potentially important realistic effects,

we make no normative claims or policy recommendations. The mechanisms that we identify

do, however, appear to have a natural basis and to be worthy of serious consideration in

policy discussions.

Our model also has implications for the welfare impact of innovation of trading technolo-

gies. For example, the beneficial welfare effects of order splitting that we have described rely

crucially on the realistic assumption that orders submitted to one exchange cannot condition

on prices at other exchanges. If, instead, trading technology were to improve so that orders

could condition on cross-exchange prices, then trades on a given exchange would have impact

on prices at other exchanges, which could eliminate the beneficial effect of order-splitting in

fragmented markets, an issue considered by Wittwer (2020) and Rostek and Yoon (2020).
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Appendix

A Verification Theorem

Here, we prove a theorem that will be used in later sections to verify a candidate symmetric

affine equilibrium. The theorem applies without alteration to the models of Section 4, Section

6, and Appendix H. In what follows, Fi denotes trader i’s information set. In the models of

Section 4 and Appendix H, Fi = σ(Xi) while in the model of Section 6, Fi = σ(Xi,
∑

j∈N Xj).

The set of admissible demand schedules, Mi, is the set of all maps h : Ω× R→ R that are

Fi×B(R)-measurable. We denote a candidate symmetric affine equilibrium by the associated

triple of demand schedule coefficients, (α, ζ,∆).

Theorem 4. Let (α, ζ,∆) be a candidate symmetric affine equilibrium such that ζ > 0. For

each e ∈ E and i ∈ N set

rie :=
∑
j 6=i

−αXj + (N − 1)∆−Qe.

For each e ∈ E, let fie be as in (2). A necessary and sufficient condition for (α, ζ,∆) to be

a symmetric affine equilibrium is that

µπ − E

[
2b

(
Xi +

∑
e∈E

fie(ω, p
f
e )

)
| Fi, rie

]
= pfe + Λfie(ω, p

f
e ) (22)

holds almost surely for each i ∈ N and e ∈ E.

Proof. We prove that trader i optimizes by submitting demand schedules of the form in (2)

to each exchange if all other traders do the same. Suppose trader i submits gie ∈ M to

exchange e. Then if a market clearing price exists, it satisfies

pe(ω) =
rie(ω) + gie (ω, pe(ω))

ζ(N − 1)
. (23)

For any given demand schedule gie which conditions the quantity purchased on the realization

of pe there is a function g̃ie which conditions the quantity purchased on the realization of rie

such that

g̃ie(ω, r
i
e(ω)) = gie (ω, pe(ω))

for each ω ∈ Ω for which a unique clearing price exists and

g̃ie(ω, r
i
e(ω)) = 0
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for each ω ∈ Ω such that there is no unique clearing price12. To see this, define g̃ie as follows.

For each r ∈ R let p(r, ω) denote the unique solution to

p =
r + gie(ω, p)

ζ(N − 1)

if such a solution exists. For all r such that p(r, ω) is well defined set

g̃ie(ω, r) = gie (ω, p(r, ω)) .

Otherwise, set

g̃ie(ω, r) = 0.

Given {fie}e∈E as in the statement of theorem, define {f̃ie}e∈E in this way. Then

f̃ie(ω, r) = −αN − 1

N
Xi −

r

N
+
N − 1

N
∆

for each e ∈ E.

It is convenient to relax trader i’s optimization problem to

sup
(g̃i1,...,g̃iE)∈ME

i

E[π
∑
e∈E

g̃ie(ω, r
i
e)− b

(
Xi +

∑
e∈E

g̃ie(ω, r
i
e)
)2 −

∑
e∈E

rie + g̃ie(ω, r
i
e)

ζ(N − 1)
g̃ie(ω, r

i
e)]. (24)

Above, we have suppressed the dependence of rie on ω. For some (g̃i1, ..., g̃iE) ∈ ME the

expectation may be infinite. As a result we will first restrict the domain to the set M̂E

where M̂ is the subset of h ∈ M such that h(·, rie(·)) is a finite variance random variable.

Later we will argue that this is without loss of generality in that any profile of demand

schedules outside of M̂E leads to −∞ utility.

To derive a first order condition we take the variation of f̃ie with an arbitrary he ∈ M̂
for each e ∈ E and substitute into the objective. This gives

E

[
π
∑
e∈E

(
f̃ie(ω, r

i
e) + νhe(ω, r

i
e)
)
− b
(
Xi +

∑
e∈E

f̃ie(ω, r
i
e) + νhe(ω, r

i
e)
)2

]

− E

[∑
e∈E

rie + f̃ie(ω, r
i
e) + νhe(ω, r

i
e)

ζ(N − 1)

(
f̃ie(ω, r

i
e) + νhe(ω, r

i
e)
)]

(25)

12Recall that if a unique market clearing price does not exist no trades are executed.
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where ν is a constant in R. Differentiating with respect to ν and evaluating at ν = 0 gives:

E

[
π
∑
e∈E

he(ω, r
i
e)− 2b

(
Xi +

∑
e∈E

f̃ie(ω, r
i
e)
)∑
e∈E

he(ω, r
i
e)

]

− E

[∑
e∈E

( f̃ie(ω, rie)
ζ(N − 1)

+
rie + f̃ie(ω, r

i
e)

ζ(N − 1)

)
he(ω, r

i
e)

]
= 0. (26)

It holds if

E

[
−2b

(
Xi +

∑
k∈E

f̃ik(ω, r
i
k)
)
| Fi, rie

]
=
f̃ie(ω, r

i
e)

ζ(N − 1)
+
rie + f̃ie(ω, r

i
e)

ζ(N − 1)
− µπ. (27)

for each e ∈ E. We now show that (27) is a sufficient condition for optimality within M̂E.

Differentiating (25) with respect to ν twice we derive

E

[
−2b

(∑
e∈E

hie(ω, re)
)2 − 2

ζ(N − 1)

∑
e∈E

hie(ω, re)
2

]
, (28)

which is less than or equal to 0 for all (h1, ..., hE) ∈ M̂E. The derivative is negative if one of

h1, ..., hN is nonzero on a set of positive measure. Suppose for contradiction that (f̃i1, ..., f̃iE)

satisfies (27) but there exists (h∗1, ..., h
∗
E) ∈ M̂E which achieves a strictly higher value of

(24). Set (h1, ..., hE) ≡ (h∗1 − f̃i1, ..., h
∗
E − f̃iE) ∈ M̂E. Then the function (25) achieves a

higher value at ν = 1 than at ν = 0. However (25) is a strictly concave function of ν and

thus has a global maximum at ν = 0. This is a contradiction.

To show that it is without loss of generality to restrict attention to optimality within M̂E

we observe that the coefficient of g̃ie(ω, r
i
e)

2 in (24) is negative. It is easy to see then that

any (g̃ie, ..., g̃iE) /∈ M̂E must result in −∞ for the objective. This can be shown formally

using the same method as in step 5 of the proof of Theorem 3.

Using (23) with (27) we see that (27) equivalent to (22) which is therefore a sufficient

condition for (α, ζ,∆) to be a symmetric affine equilibrium. We now show that it is also a

necessary condition. Suppose for some e ∈ E, (22) does not hold and set

he(ω, r
i
e) = µπ + E

[
−2b

(
Xi +

∑
k∈E

f̃ik(ω, r
i
k)
)
| Fi, rie

]
− f̃ie(ω, r

i
e)

ζ(N − 1)
− rie + f̃ie(ω, r

i
e)

ζ(N − 1)
.

Note that he is an affine function of rie. This is because the expectation is affine in rie in each

of the models of Section 4, Section 6, and Appendix H. Set hk(ω, r
i
k) = 0 for k 6= e. Then

(26) is strictly positive. Thus for all ν sufficiently small (f̃i1, ..., f̃ie + νhe, ..., f̃iE) achieves
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a higher value of the objective (24) than does (f̃i1, ..., f̃iE). Define the demand schedule de

such that for any given p ∈ R and ω ∈ Ω

de(ω, p) = (f̃ie + he)(ω, r(ω, p))

where r(ω, p) is defined to be the r that solves

p =
r + (f̃ie + νhe)(ω, r)

ζ(N − 1)
.

If ν was chosen sufficiently small, r(ω, p) is well defined since the right hand side is an affine

function of r with nonzero slope and so de(ω, p) is also well defined. Moreover

de(ω, pe(ω)) = (f̃ie + he)(ω, r
i
e(ω))

for each ω ∈ Ω. But then (fi1, ..., de, ..., fiE) gives higher expected utility to trader i than

does (fi1, ..., fiE) which is a contradiction. Thus (22) is also a necessary condition.

B Proofs for Section 4

Here, we provide proofs for all results in Section 4 as well as present additional results which

were not included in the main text. We first prove Lemma 5 which states that an equilbrium

is “more efficient” the closer is EαE to 1. Lemma 5 will be used in the proof of Theorem 1.

Lemma 5. Let (α, ζ,∆) be a symmetric affine equilibrium when there are E exchanges and

(α̂, ζ̂, ∆̂) be a symmetric affine equilibrium when there are Ê exchanges. For each ω ∈ Ω,

the sum of strategic traders’ holding costs post trade is strictly lower in the equilibrium

corresponding to (α, ζ,∆) if |1 − Eα| < |1 − Êα̂|. If the sum of strategic traders’ holding

costs post trade are equal across the two equilibria, then |1− Eα| = |1− Êα̂|

Proof. The sum of holding costs in the equilibrium (α, ζ,∆) is

b
∑
i∈N

(
(1− Eα)Xi + Eα

1

N

∑
j∈N

Xj +

∑
e∈E Qe

N

)2

.

Expanding, rearranging, and combining like terms we obtain

b
∑
i∈N

(1− Eα)2X2
i − [(1− Eα)2 − 1]

1

N

(∑
j∈N

Xj

)2

+
(
∑

e∈E Qe)
2

N
+ 2

∑
e∈E Qe

N

∑
j∈N

Xj

 .
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The result is an implication of the above expression and Jensen’s inequality.

B.1 Proof of Theorem 1

We prove Theorem 1 in 3 steps. In step 1, we derive a system of equations and show that

a necessary and sufficient condition for (αE,ζE, ∆E) to be a symmetric affine equilibrium is

that they solve this system. In step 2 we prove that there is exists a unique solution to the

system, thus establishing existence and uniqueness of a symmetric affine equilibrium. This

proves the preamble in Theorem 1. In step 3, we prove parts 1 through 6.

Step 1. Conjecture that there exists a symmetric affine equilibrium (αE, ζE,∆E). Under

this conjecture, each agent i ∈ N submits a demand schedule of the form in (2) to each

e ∈ E and i ∈ N . Market clearing in exchange e implies that the equilibrium price is

pfe =
−αE(

∑
iXi) + ∆EN −Qe

ζEN
. (29)

Price impact can also be determined from the market clearing condition. If trader i purchases

q units on exchange e when all other traders submit the equilibrium demand schedules then

−αE

 ∑
{j∈N | j 6=i}

Xj

− ζE(N − 1)pe + ∆E(N − 1) + q = Qe.

This implies that the inverse residual supply curve trader i faces is

pe(q) =
−αE

∑
{j∈N |j 6=i}Xi + q + ∆E(N − 1)−Qe

ζE(N − 1)
. (30)

Thus the price impact trader i faces in exchange e is Λ := 1
ζE(N−1)

, which by symmetry, is

the price impact each agent faces in all exchanges. Define fie(Xi, p
f
e ) := qfie. By Theorem 4

a necessary and sufficient condition for (αE, ζE,∆E) to be a symmetric affine equilibrium is

that

− 2b

(
Xi + qfie + (E − 1)E

[
qfik | p

f
e −

qfie
ζE(N − 1)

, Xi

])
= pfe + ΛEq

f
ie − µπ (31)

holds almost surely for each e ∈ E and trader i ∈ N . In (31), we have used symmetry of the
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exchanges. By the projection theorem,

E

[
qfik | p

f
e −

qfie
ζE(N − 1)

, Xi

]
= −αEXi

N − 1

N
−
(

1− N − 1

N
γE

)
∆E

− N − 1

N
γEζEp

f
e + γE

qfie
N

+ ∆E, (32)

where

γE = corrXi(p
f
e , p

f
k) =

Eα2
E(N − 1)σ2

X

Eα2
E(N − 1)σ2

X + σ2
Q

. (33)

Substituting (32) and (2) into (31) and matching coefficients we derive a system of three

equations which characterize the three unknowns, αE, ζE, and ∆E. These equations are

ζE =
1

2b((E − 1)γE + 1)

N − 2

N − 1
(34)

αE =
1

1 + γE(E−1)
N

+ (E−1)γE+1
N−2

+ (E − 1)N−1
N

, (35)

and

∆E =
µπ

2b
(

1 + γE(E−1)
N

+ (γE(E−1)+1)
N−2

+ (E − 1)N−1
N
γE

) . (36)

Equations (34), (35), and (36) are necessary and sufficient conditions for (αE, ζE,∆E) to be

a symmetric affine equilibrium.

Step 2. We now prove existence of a symmetric affine equilibrium. It is straightforward

to substitute (33) into (35) and derive a cubic equation that characterizes αE. Since the

equation is cubic, there exists at least one real root. Take this to be the value of αE and

compute ζE and ∆E using equations (33), (34), and (36). Thus a symmetric affine equilibrium

exists.

To prove uniqueness, fix E ∈ N and define the function g as follows

g(a) := a− 1

Eγ( 1
N

+ 1
N−2

) + (1− γ)( 1
N

+ 1
N−2

) + EN−1
N

where γ is a function of a such that γ(a) is equal to (33) but with a in place of αE. Since

we have already shown existence there is an a ∈ R such that g(a) = 0. We observe that the

second term in the above expression is strictly monotone decreasing in γ. By (33) we see

that γ is strictly monotone increasing in a. Thus g(a) is strictly monotone increasing in a.

Hence there can exist at most one value of a ∈ R such that g(a) = 0.
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Step 3. Part 1 follows immediately from (29) and the fact that ΛE = 1
(N−1)ζE

. Part 2

follows immediately from (34). Part 3 follows by substituting (29) into (2). Part 4 can be

seen from the fact that when σ2
Q = 0, γE is equal to 1 so that inspecting equations (34),

(35), and (36) we have closed form solutions for ζE, αE, and ∆E. Using these closed form

solutions we find that EαE, by (35), is equal to N−1
N−2

which is independent of E and also

equal to 2b
2b+Λ1

. To prove part 5, we combine part 3 with part 4.

Finally, we prove part 6. By Proposition 1, γ → 0—note that the proof of Proposition

1 does not rely on Part 6 of Theorem 1 so the logic is not circular. Using (35) with some

rearrangement we write

EαE =
1

γE( 1
N

+ 1
N−2

) + (1− γE) 1
E

( 1
N

+ 1
N−2

) + N−1
N

. (37)

Taking limits, EαE → N
N−1

. To prove that EαE is strictly monotone increasing in E, suppose

for contradiction that there exists E ∈ N such that (E+1)αE+1 < EαE. Then by inspection

it must be that γE+1 > γE. But, inspecting (33), this implies that (E + 1)α2
E+1 > Eα2

E

which in turn implies that (E + 1)αE+1 > EαE, a contradiction.

When E is equal to 1, EαE is equal to N−2
N−1

by part 5. When E → ∞, EαE converges

strictly monotonically to N
N−1

. Thus for any E > 1 we have

1

N − 1
= | 1− α1 | > | 1− EαE | .

That a fragmented market is always more efficient than a centralized market follows from

Lemma 5.

C Proofs for Section 5

C.1 Proof of Proposition 1

That ΛE is strictly monotone increasing and diverges to ∞ when σ2
Q = 0 is immediate from

Theorem 1, where we showed that, in this case, ΛE = 2bE
N−2

. For what follows assume σ2
Q > 0.

By Theorem 1 we have ΛE = 2b(1+γE(E−1))
N−2

. To show ΛE is strictly monotone increasing

it suffices to show that (E − 1)γE is strictly monotone increasing. Fix an arbitrary E ∈ N.

If γE+1 > γE, then it must be that EγE+1 > (E − 1)γE. Suppose γE+1 ≤ γE. Then to prove

that EγE+1 > (E−1)γE it suffices to prove that (E+ 1)γE+1 > EγE. Consider the equation
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for γn derived in the proof of Theorem 1 which holds for arbitrary n ∈ N:

nα2
n(N − 1)σ2

X

nα2
n(N − 1)σ2

X + σ2
Q

.

Denote the numerator, numn so that

γn =
numn

numn + σ2
Q

.

By Theorem 1, (E + 1)αE+1 > EαE which implies that

(E + 1)γE+1 =
(E + 1)numE+1

numE+1 + σ2
Q

>
EnumE

numE + σ2
Q

= EγE.

We next prove that ΛE converges and give an explicit expression for the limit point. We

can, using the expression for γE, write ΛE as

2b

N − 2

(
1 +

E2α2
E(N − 1)σ2

X − Eα2
E(N − 1)σ2

X

Eα2
E(N − 1)σ2

X + σ2
Q

)
.

By Theorem 1, EαE → N
N−1

which implies that Eα2
E → 0. Taking limits of the right-hand

side of the above equation we obtain ΛE → 2b
N−2

(1 +
N2σ2

X

(N−1)σ2
Q

).

To prove that γE → 0 we inspect (35) to see that

1

E(N−1
N

+ 1
N

+ 1
N−2

)
< αE <

1

EN−1
N

for all E sufficiently large. Inspecting (33), we see that for large E, the numerator is O( 1
E

)

since by Theorem 1 EαE converges. The denominator is roughly equal to σ2
Q for large E so

it must be that γE → 0.

Finally, we prove that γE is strictly monotone decreasing in E. Using (37) and substi-

tuting into (33) we derive a cubic equation which characterizes γ:

γ3Eσ2
Q(1− 1

E
)2(

1

N
+

1

N − 2
)2 + γ2Eσ2

Q

(
N − 1

N
+

1

E
(

1

N
+

1

N − 2
)

)2

+ 2γ2σ2
Q(1− 1

E
)(

1

N
+

1

N − 2
)(
N − 1

N
E +

1

N
+

1

N − 2
) + γσ2

X(N − 1) = σ2
X(N − 1). (38)
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Each of the coefficients are unambiguously increasing in E except for possibly

Eσ2
Q

(N − 1

N
+

1

E
(

1

N
+

1

N − 2
)
)2
.

Taking a derivative with respect to E we have

σ2
Q

(N − 1

N
+

1

E
(

1

N
+

1

N − 2
)
)2 − 2

E
σ2
Q

(N − 1

N
+

1

E
(

1

N
+

1

N − 2
)
)
.

This derivative is nonegative if

E
N − 1

N
+

1

N
+

1

N − 2
≥ 2.

The above holds for E ≥ 2 since

2
N − 1

N
+

1

N
+

1

N − 2
≥ 2.

Since each of the coefficients of the powers of γ in (38) are increasing in E and some are

strictly increasing it must be that γ is strictly decreasing in E since the right hand side of

(38) is constant.

C.2 Proof of Proposition 2

Substituting (33) into (35) and rearranging we obtain the following cubic equation which

defines EαE:

(EαE)3(σ2
X(N−1)(1+

1

N − 2
))−(EαE)2(N−1)σ2

X+EαEσ
2
Q(E−E

N
+

1

N
+

1

N − 2
)−Eσ2

Q = 0.

The efficient allocation is acheived at E∗ such that E∗αE∗ = 1 provided E∗ is in N. Thus

(σ2
X(N − 1)(1 +

1

N − 2
))− (N − 1)σ2

X + σ2
Q(E∗ − E∗

N
+

1

N
+

1

N − 2
)− E∗σ2

Q = 0.

Solving for E∗ yields

E∗ = 2 +
2

N − 2
+
N − 1

N − 2

Nσ2
X

σ2
Q

.

That the E ∈ N whose symmetric affine equilibrium allocation is most efficient is either

bE∗c or dE∗e follows from the proof of part 6 of Theorem 1 which shows that EαE is strictly

monotone increasing. By inspection, the proof did not rely upon E taking values in N—

the same method of proof can be adapted to show that if we increase E continuously, the
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corresponding αE which simultaneously solves (33) and (35) is such that EαE is strictly

monotone increasing. Combining this observation with Lemma 5 gives the result.

C.3 Proof of Proposition 3

We first prove part 1. Recall that

p∗e =
N − 1

N
ΛE[
∑
i∈N

Xi +N∆E −Qe].

By the projection theorem

var[
∑
i∈N

Xi | p∗e] = (1−
α2
Evar[

∑
i∈N Xi]

α2
Evar[

∑
i∈N Xi] +

σ2
Q

E

)var[
∑
i∈N

Xi].

By an argument analogous to the one used to show that γE is strictly monotone decreas-

ing to 0 given in Proposition 1, we can show that
α2
Evar[

∑
i∈N Xi]

α2
Evar[

∑
i∈N Xi]+

σ2
Q
E

converges to 0 strictly

monotonically as E diverges.

We now prove part 2. Since the price in each exchange consists of a common signal

component and noise which is i.i.d across exchanges, the sum of prices is a sufficient statistic

for inference so that var[
∑

i∈N Xi |
∑

e∈E p
∗
e] = var[

∑
i∈N Xi | p∗1, ..., p∗E]. We have

∑
e∈E

p∗e =
N − 1

N
ΛE[−EαE

∑
i∈N

Xi −Q+ EN∆E].

By the projection theorem,

var[
∑
i∈N

Xi |
∑
e∈E

p∗e] = var[
∑
i∈N

Xi]−
(EαE)2var[

∑
i∈N Xi]

(EαE)2var[
∑

i∈N Xi] + σ2
Q

var[
∑
i∈N

Xi]

The result follows since
(EαE)2var[

∑
i∈N Xi]

(EαE)2var[
∑
i∈N Xi]+σ2

Q
increases strictly monotonically because EαE

increases strictly monotonically as seen from part 6 of Theorem 1.

Proposition 4. The expected payment of liquidity traders is N−1
N

ΛEσ
2
Q and if σ2

Q > 0 is

strictly monotone increasing in E.

Proof.

−E[
∑
e∈E

p∗eQe] = −N − 1

N
ΛEE[(−

∑
e∈E

(αE
∑
i∈N

Xi +N∆E +Qe)Qe] =
N − 1

N
ΛEσ

2
Q.
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That the expected payment is strictly monotone increasing follows from the fact that ΛE is

strictly monotone increasing as stated in Proposition 1.

D Proofs for Section 6

D.1 Proof of Theorem 2

We prove Theorem 2 in 3 steps. In the step 1 we derive a candidate equilibrium. In step 2

we verify that the candidate equilibrium is in fact an equilibrium, and then establish that

it is the unique symmetric affine equilibrium if for each e ∈ E, Qe has full support over the

real line. In step 3 we show that the derived equilibrium has properties 1 through 5 given

in the statement of the theorem.

Step 1. To begin the first step, we conjecture that there exists a symmetric affine equi-

librium, denoted (α, ζ,∆) in which each trader submits demand schedules of the form in

(2). Define qfie by qfie := fie(Xi, p
f
e ). Under this conjecture, by market clearing, the residual

supply curve trader i faces in exchange e is

pe(q) =
(
∑

j 6=i∈N −αXj) + (N − 1)∆ + q −Qe

(N − 1)ζ

which implies that Λ = 1
(N−1)ζ

. Also by market clearing we have

pfe =
(
∑

j∈N −αXj) +N∆−Qe

Nζ
. (39)

for each e ∈ E. By observing pfe trader i can infer the realization of Qe but this is unin-

formative of pfk for k 6= e. Define qfie by qfie := fie(Xi, p
f
e ). By Theorem 4 a necessary and

sufficient condition for (α, ζ,∆) to be a symmetric affine equilibrium is that

− 2b(Xi + qfie + (E − 1)E[qfik | Fi]) = pfe + qfieΛ− µπ (40)

where we have used symmetry. Rearranging, we have

qfie =
−2bXi − 2b(E − 1)E[qfik | Fi]− pfe + µπ

Λ + 2b
.
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Substituting pfk into the conjectured equilibrium demand schedule, we have

qfik = −αXi +
(
∑

j∈N αXj) +Qk

N

so that

E[qfik | Fi] = −αXi +
(
∑

j∈N αXj)

N
.

We therefore have

qfie =
(−2b+ 2b(E − 1)α)Xi − 2b(E − 1)

(
∑
j∈N αXj)

N
− pfe + µπ

1
(N−1)ζ

+ 2b
.

We now match coefficients with our conjecture that qfie = −αXi− ζpfe + ∆ to determine that

ζ =
N − 2

N − 1

1

2b
, (41)

Λ =
2b

N − 2
, (42)

α =
2b

Λ + 2bE
, (43)

and

∆ =
−2b(E − 1) 2b

Λ+2bE

∑
i∈N Xi
N

+ µπ

2b+ Λ
. (44)

Step 2. To complete step two we appeal to Theorem 4 which can be applied since (40)

holds. To see that the symmetric affine equilibrium is unique when each Qe has full support

over the real line suppose that there exists a symmetric affine equilibrium such that at least

one of the equations (41), (43), and (44) are not satisfied. Then equation (40) is violated

for some realization of the price in some exchange e ∈ E for some agent i ∈ N . Continuity

implies that (40) must be violated for realizations of pfe in an open neighborhood of positive

Lebesgue measure. Since each Qe has full support over the real line and is independent of

Fi (40) is violated on a set of positive P-measure. This contradicts Theorem 4.

Step 3. Part 1 was shown in equation (42). Part 2. follows from substituting equations

(41), (43), and (44) into (39). Part 3 follows from substituting the equation for price in part
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2 in to the equilibrium demand schedule. To prove part 4, we have

−E[
∑
e∈E

p∗eQe] = −N − 1

N

2b

N − 2
E[
∑
e∈E

(
∑
i∈N

−αXi +N∆−Qe)Qe] =
2b(N − 1)

N(N − 2)
var[

∑
e∈E

Qe].

Part 5 follows from part 3 and taking the limit as E tends to infinity.

E Proofs for Section 7

This appendix provides a proof of Theorem 3, characterizing an efficient equilibrium for the

dynamic version of the model.

E.1 Proof of Theorem 3

The proof proceeds in six steps. In Step 1 we derive the Bellman equation for the dynamic

programming problem of trader i. In Step 2 we conjecture a continuation value function

V as a solution to the Bellman and we derive a first order condition characterizing the

optimal demand schedules of trader i in a restricted domain of demand schedules. In Step

3, we use the first order condition to compute the necessary number E of exchanges and

the demand-schedule coefficients ρ, ζ, and χ. In Step 4 we relax the domain restriction on

demand schedules. In Step 5, we verify a transversality condition on the value function. In

Step 6 we verify that the strategy of submitting demand schedules with coefficients derived

in Step 3 from the Bellman equation is in fact optimal.

Step 1.

For a given date t, let Ht := ({qie}e∈E,s<t, {pe}e∈E,s<t, {Xis}s≤t) denote the history of

past quantities purchased by trader i, prices on each of the exchanges, and inventory levels.

An admissible demand schedule submitted to an exchange e is a function f specifying the

quantity f(Ht, p) that trader i will purchase for any given realization p ∈ R of the price in

the exchange following the history Ht. By inspecting (13) and following a similar argument

to that given in the proof of Theorem 4, we see that for any such demand function f there

exists a corresponding function f̂ that instead specifies the quantity purchased by trader i

as a function of Ht and

Wet :=
1

E

∑
j∈N

Xjt +Qet.

For instance, in the conjectured equilibrium, on exchange e, trader i makes the socially
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efficient purchase

f̂iet (Ht,Wet) = − 1

E
Xit +

Wet

N
, (45)

as can be seen by substituting (13) into (11).

We first relax the dynamic programming problem by allowing trader i to select demand

functions of the type f̂ . Let κet denote (Xit, Bt,Wet). Under the relaxation, the Bellman

equation characterizing trader i’s continuation value function V ( · ) is

V (Xit, Bt) = sup
{gi1t,...,giEt}

Eit
[
uit + e−r∆V (Xi,t+1, Bt+1)

]
, (46)

where

uit = µπ∆

(
Xit +

∑
e∈E

giet(κet)

)
− b

(
Xit +

∑
e∈E

giet(κet)

)2

−
∑
e∈E

petgiet(κet).

Above, each giet : R3 → R is an arbitrary measurable function. We will assume for now

that each giet is such that giet(κet) is of finite variance conditional on Xit and Bt. Call the set

of all such measurable functions with this property M̃. We will show in step 4 that the finite

variance assumption is without loss of generality. Note that f̂iet is in M̃. The operator Eit
is the conditional expectation given the state variables, Xit and Bt. These are the relevant

state variables because, at date t, trader i infers that N−1
N
Bt is the total inventory held by

the other traders following trade at date t − 1. Thus Xit and Bt are sufficient statistics for

trader i to conduct inference on the residual supply curves on each exchange at each future

trading date. The law of motion for (Xit, Bt) is given by (9) and (12).

A standard verification argument implies that if V satisfies the Bellman equation, and

for every feasible strategy, the transversality condition

lim
t→∞

e−r∆tEi0 [V (Xit, Bt)] = 0, (47)

then V is indeed the value function and the strategy achieving the supremum in (46) deter-

mines the optimal policy.

Step 2. We conjecture the value function V defined by

V (Xit, Bt) =
∞∑
s=t

e−r∆(s−t)Ms, (48)
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where

Ms = Eit

µπ∆

(
X f̂
is +

∑
e∈E

qf̂ies

)
− b

(
X f̂
is +

∑
e∈E

qf̂ies

)2

−
∑
e∈E

pf̂esq
f̂
ies

 .
and where the superscript f̂ implies that the inventories, quantities, and prices are those

induced by the conjectured equilibrium strategy in which any given trader i selects (45) for

any given exchange e. Substituting (48) into the right hand side of the Bellman and using

the law of iterated expectations, we can write the objective function in the Bellman equation

as

Eit

 ∞∑
s=t

e−r∆(s−t)

µπ∆

(
Xg
is +

∑
e∈E

qgies

)
− b

(
Xg
is +

∑
e∈E

qgies

)2

−
∑
e∈E

pgesq
g
ies

 ,
where the superscript g indicates that inventories, quantities, and prices are those generated

by a strategy that selects at date t demands according to the functions gi1t, ..., giEt, and then

reverts back to the conjectured equilibrium strategy at date t+ 1. We now derive the E, ρ,

ζ, and χ such that the optimal choice of gi1t, ..., giEt coincides with (45), thus verifying the

conjecture (48).

To simplify the objective further, we recognize that for any choice of the deviating de-

mands gi1t, ..., giEt, following trade at date t + 1, the inventory of trader i returns to the

efficient level, so all inventories, prices, and quantities at dates s > t+ 1 would be the same

as if trader i had never deviated and therefore do not depend on the chosen gi1t, ..., giEt.

Thus, it suffices to consider the objective

Eit

µπ∆
∑
e∈E

qgiet − b

(
Xg
it +

∑
e∈E

qgiet

)2

−
∑
e∈E

pgetq
g
iet − e−r∆

∑
e∈E

pge,t+1q
g
ie,t+1

 . (49)

Let ηet ≡ − 1
E

∑
j 6=iXjt −Qet. Then

∑
e∈E

pletq
g
iet =

∑
e∈E

ηet + (N − 1)ρBt + (N − 1)χ+ qgiet
ζ(N − 1)

qgiet

=
1

ζ(N − 1)

[∑
e∈E

(
ηet + (N − 1)ρBt + (N − 1)χ

)
qgiet +

∑
e∈E

(qgiet)
2

]
. (50)
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From (9), (11), and (13),

qgie,t+1 = − 1

E

(
Xit +

∑
e∈E

qgiet + εi,t+1

)
+

1

NE

∑
j∈N

Xg
j,t+1 +

Qe,t+1

N

and

pge,t+1 =
− 1
E

∑
j∈N X

g
j,t+1 +Nρ

(
NEρBt + ENχ− ζN

∑
e∈E p

g
et

)
−Qe,t+1 +Nχ

ζN
.

From the above two equations,

pge,t+1q
g
ie,t+1 =

(
1

ζN

1

E2

∑
j∈N

Xg
j,t+1 −

Nρ2

ζ
Bt −

Nρχ

ζ
− 1

E

χ

ζ

)∑
e∈E

qgie,t

−Nρ

(
− 1

E
Xit +

1

NE

∑
j∈N

Xg
j,t+1

)∑
e∈E

pget +Nρ
1

E

∑
e∈E

pget
∑
e∈E

qgiet +Oe, (51)

where Oe is a term whose conditional expectation does not depend on the choice of {giet}e∈E.

Equivalently, we can express (51) as

pge,t+1q
g
ie,t+1 =

(
1

ζN

1

E2

∑
j∈N

Xg
j,t+1 −

Nρ2

ζ
Bt −

Nρχ

ζ
− 1

E

χ

ζ

)∑
e∈E

qgiet

−Nρ

(
− 1

E
Xit +

1

NE

∑
j∈N

Xg
j,t+1

)∑
e∈E

ηet + (N − 1)ρBt + (N − 1)χ+ qgiet
ζ(N − 1)

+Nρ
1

E

∑
e∈E

ηet + (N − 1)ρBt + (N − 1)χ+ qgiet
ζ(N − 1)

∑
e∈E

qgiet +Oe. (52)

By substituting (50) and (52) into (49), recalling that by definition qgiet = giet (κet) , and

ignoring terms whose conditional expectation does not depend on the choice {giet}e∈E we

have transformed the objective function in the Bellman equation into

Eit

A(∑
e∈E

giet(κet)

)2

+B
∑
e∈E

giet(κet) + Cδit,

 , (53)

where

δit =
∑
e∈E

(ηet + (N − 1)ρBt + (N − 1)χ)giet(κet) + giet(κet)
2,
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for coefficients

A = −b−Nρ 1

ζ(N − 1)
e−r∆

B = µπ∆− 2bXit − e−r∆
[

1

ζN

1

E

∑
j∈N

Xg
j,t+1 −

NEρ2

ζ
Bt −

NEρχ

ζ
− χ

ζ

]

+
e−r∆Nρ

ζ(N − 1)

(
−Xit +

1

N

∑
j∈N

Xg
j,t+1

)
− e−r∆Nρ

ζ(N − 1)

∑
e∈E

(
ηet + (N − 1)ρBt + (N − 1)χ

)
C = − 1

ζ(N − 1)
. (54)

Next, for each e ∈ E, we let

giet(κet) = f̂iet(κet) + νhiet(κet),

for an arbitrary measurable deviation hiet in M̃ from the conjectured optimal f̂iet, and for

some arbitrary constant ν. Substituting into (53) leaves

Eit
[
A

(∑
e∈E

f̂iet + ν
∑
e∈E

hiet

)2

+B
∑
e∈E

(f̂iet + νhiet)

+ C
∑
e∈E

(
ηet + (N − 1)ρBt + (N − 1)χ

)
(f̂iet + νhiet) + (f̂iet + νhiet)

2

]
, (55)

where we have suppressed the argument κet from the notation, and will continue to do so

whenever convenient. Taking a derivative with respect to ν, evaluating the derivative at

ν = 0, and setting the derivative equal to 0 gives the necessary optimality condition

Eit
[
2A
∑
e∈E

f̂iet
∑
e∈E

hiet +B
∑
e∈E

hiet +C
∑
e∈E

(ηet + (N − 1)ρBt + (N − 1)χ)hiet + 2f̂iethiet

]
= 0,

which holds if, for each k ∈ E,

Eit

[
2A
∑
e∈E

f̂iet +B + C
(
ηet + (N − 1)ρBt + (N − 1)χ

) ∣∣∣∣ ηkt
]

= −2Cf̂ikt. (56)

The necessary condition (56) is also sufficient for optimality if the second derivative of (55)
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with respect to ν is negative, that is,

Eit

A(∑
e∈E

hiet

)2

+ C
∑
e∈E

h2
iet

 < 0. (57)

To see why, suppose for contradiction that there exists a candidate (Li1t, ..., LiEt) in M̃
satisfying the first order condition (56) that achieves a strictly higher value of the objective

than (f̂i1t, . . . , f̂iEt). In that case, let hiet = Liet − f̂iet for each e ∈ E. Then (55) achieves a

higher value at ν = 1 than at ν = 0. This is a contradiction since (57) ensures that (55) is

maximized at ν = 0.

Step 3. We derive the E, ζ, ρ, and χ such that (56) holds and then show that (57) is

satisfied. This implies that we have found a solution to the Bellman equation. We first

derive the moments in (56). By (45),

Eit

[∑
e∈E

f̂iet

∣∣∣∣ ηkt
]

= −Xit +
1

N
Eit

[∑
j∈N

Xjt +Qkt

∣∣∣∣ ηkt
]

and

Eit[B
∣∣ ηkt] =

−
(

2b+
2e−r∆Nρ

ζ(N − 1)

)
Xit +

(
− e

−r∆

ζNE
+
e−r∆ρ(N + 1)

ζ(N − 1)

)
Eit

[∑
j∈N

Xj,t +Qkt

∣∣∣∣ ηkt
]

+ e−r∆
χ

ζ
+ µπ∆. (58)

By the projection theorem,

Eit

[∑
j∈N

Xjt +Qkt

∣∣∣∣ ηkt
]

=

(
N − 1

N
Bt +Xit

)
(1−Γ)

E − 1

E
− (1 + Γ(E−1))

(
ηkt −

1

E
Xit

)
,

(59)

where

Γ =
(N − 1)σ2

ε

(N − 1)σ2
ε + Eσ2

Q

.

Finally, we use the fact that

f̂ikt = − 1

E
Xit −

1

N

(
ηkt −

1

E
Xit

)
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and match coefficients in (56). Matching the coefficient on Xit gives

2C

E
= 2A

1

N
(1− Γ)

E − 1

E
+ e−r∆

(
−1

ζNE
+
ρ(N + 1)

ζ(N − 1)

)
(1− Γ)

E − 1

E
+
C

E
. (60)

Matching the coefficient on ηkt − 1
E
Xit gives

2C

N
= −2A

1

N
(1 + Γ(E − 1)) − e−r∆

(
−1

ζNE
+
ρ(N + 1)

ζ(N − 1)

)
(1 + Γ(E − 1)) + C. (61)

Matching the coefficient on Bt gives

(1 − N)ρC = 2A
N − 1

N2
(1 − Γ)

E − 1

E
+ e−r∆

(
−1

ζNE
+
ρ(N + 1)

ζ(N − 1)

)
N − 1

N
(1 − Γ)

E − 1

E
.

(62)

Matching the constant coefficient gives

0 = C(N − 1)χ+ e−r∆
χ

ζ
+ µπ∆. (63)

Using (60) and (61), we have

N − 2

N
=

1 + Γ(E − 1)

(1− Γ)(E − 1)
.

Rearranging gives

E =
2N − 2

N − 2−N Γ
1−Γ

. (64)

As an aside, this expression is useful in so far as it characterizes the efficient number of

exchanges in a partial equilibrium model in which strategic traders percieve the correlation

in exchange prices to be Γ. Taking Γ as given, the analysis does not depend on σ2
ε or σ2

Q.

We deduce from (64) that

E = 2 +
2

N − 2
+
N(N − 1)

N − 2

σ2
ε

σ2
Q

. (65)

Thus the number of exchanges achieving the efficient allocation is precisely that of the static

case, as stated by the Theorem.

Next, using (60) and (62), we can solve for

ρ = − 1

NE
.
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Now, in order to solve for ζ, we use (17) with (61) to get

1

N
=
N − 1

N
+ e−r∆

N − 1

N

(
Nρ− 1

E

)
(1 + Γ(E − 1))− 2bζ(N − 1)

1

N
(1 + Γ(E − 1)),

which rearranges to

2bζ(N − 1)(1 + Γ(E − 1)) = N − 2− e−r∆(N − 1)
2

E
(1 + Γ(E − 1)).

Thus

ζ =
N − 2

2b(N − 1)(1 + Γ(E − 1))
− e−r∆ 2N − 2

(N − 1)2bE
.

Using (63) we find

χ =
µπ∆

1− e−r∆
ζ. (66)

The within-period price impact is

1

ζ(N − 1)
=

2b(1 + Γ(E − 1))

N − 2− e−r∆ 2N−2
E

(1 + Γ(E − 1))
,

as stated in the Theorem. Comparing with the static model, we see that price impact is

higher in the dynamic model. We now verify that ζ > 0 by showing that

N − 2 > e−r∆
2N − 2

E
(1 + Γ(E − 1)).

The above equality holds since (64) implies that

(N − 2)E = (2N − 2)(1 + Γ(E − 1)).

Using (20), the cross-period cross-exchange price impact is

dpe,t+1

dqkt
= −Nρ 1

(N − 1)ζ
=

1

E

2b(1 + Γ(E − 1))

N − 2− e−r∆ 2N−2
E

(1 + Γ(E − 1))
,

as stipulated by the Theorem. Finally, we verify the sufficient condition for optimality (57)

is negative by showing that

A

(∑
e∈E

hiet

)2

+ C
∑
e∈E

h2
iet < 0.
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Using (54) and (17), this is equivalent to

(
−b+

1

E

1

ζ(N − 1)
e−r∆

)(∑
e∈E

hiet

)2

− 1

ζ(N − 1)

∑
e∈E

h2
iet < 0,

which holds by Jensen’s inequality because ζ > 0. Thus, (48) solves the Bellman equation

when the domain of admissible demand functions is restricted to M̃.

Step 4. In this step, we show that if any measurable giet : R3 → R outside of M̃ is chosen,

the objective associated with the Bellman equation is −∞. Towards this end, consider the

terms in (53) involving (
∑

e∈E giet)
2 and

∑
e∈E g

2
iet, which sum to

[
−b+

1

Eζ(N − 1)
e−r∆

](∑
e∈E

giet

)2

− 1

ζ(N − 1)

∑
e∈E

g2
iet.

By Jensen’s inequality, the above expression is less than

− b

(∑
e∈E

giet

)2

− (1− e−r∆)
1

ζ(N − 1)

∑
e∈E

g2
iet. (67)

The other terms in (53) are B
∑

e∈E giet, which is only linear in
∑

e∈E giet, with B having

finite variance, and C
∑

e∈E(ηet + (N − 1)ρBt + (N − 1)χ)giet, where each ηet is of finite

variance. We define Je by

Bgiet + C (ηet + (N − 1)ρBt + (N − 1)χ) giet = Jegiet.

Note that each Je is of finite variance.

Then

Eit
[
− 1− e−r∆

ζ(N − 1)
g2
iet + Jegiet

]
=∫

{
ω∈Ω:|Je|>| 1−e

−r∆
2ζ(N−1)

giet|
}
(
− 1− e−r∆

ζ(N − 1)
g2
iet + Jegiet

)
dP(ω)

+

∫
{
ω∈Ω:|Je|≤| 1−e

−r∆
2ζ(N−1)

giet|
}
(
− 1− e−r∆

ζ(N − 1)
g2
iet + Jegiet

)
dP(ω).

The first integral must be finite since Je is a finite-variance random variable and the
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integrand satisfies ∣∣∣∣ − 1− e−r∆

ζ(N − 1)
g2
iet + Jegiet

∣∣∣∣ ≤ KJ2
e ,

for some constant K ∈ R. The second integral must be −∞ since the integrand satisfies

− 1− e−r∆

ζ(N − 1)
g2
iet + Jegiet ≤ −

1− e−r∆

2ζ(N − 1)
g2
iet.

Thus, if giet is of infinite variance then the second integral must be −∞. Hence, in this case,

Eit
[
− 1− e−r∆

ζ(N − 1)
g2
iet + Jegiet

]
= −∞.

Inspecting (67) and (53) we see that if a chosen giet is not in M̃, the objective function

would equal to −∞.

Step 5. We now check that the transversality condition (47) holds. We compute the

moments involved in the terms Ms defining the candidate value function V of (48). For

s ≥ t,

Eit

[
Xis +

∑
e∈E

qf̂es

]
=

1

N
Xit +

N − 1

N2
Bt

and

Eit

(Xis +
∑
e∈E

qf̂es

)2
 =

1

N2

[
(Xit +

N − 1

N
Bt)

2 + σ2
ε

(
N(s− t) +N − 1

)
+ σ2

Q(s− t+ 1)

]

For s ≥ t+ 1 and e ∈ E,

Eit[pf̂esq
f̂
ies] = Eit

[
− 1
E

∑
j∈N Xjs − 1

E
Ws−1 −Qes

ζN

(
− 1

E
Xis +

1

NE

∑
j∈N

Xjs +
Qes

N

)]

= Eit

[
− 1
E

∑
j∈N Xjs − 1

E
Ws−1 −Qes

ζN

(
1

NE

∑
j∈N

εjs +
Qes

N

)]

= −
σ2
Q

EζN2
− σ2

ε

NζE2
.
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Next,

Eit[pf̂etq
f̂
iet] = Eit

[
− 1
E

∑
j∈N Xjt − 1

E
Bt −Qet

ζN

(
− 1

E
Xit +

1

NE

∑
j∈N

Xjt +
Qet

N

)]

=
N − 1

ζN2E2
X2
it +

2

E2ζN
(
N − 1

N
)2XitBt −

N − 1

N2E2

2N − 1

N2ζ
B2
t −

σ2
Q

EζN2
− (N − 1)σ2

ε

E2ζN2
.

Substituting these moments into (48) we find that

V (Xit, Bt) = X2
it

[
−b

N2(1− e−r∆)
− N − 1

ζN2E

]
+ µπ∆

1

N(1− e−r∆)
Xit

+ µπ∆
N − 1

N2(1− e−r∆)
Bt −

[
−2b

N − 1

N3(1− e−r∆)
− 2

EζN
(
N − 1

N
)2

]
BtXit

+ [−b(N − 1

N
)2 1

N2(1− e−r∆)
+
N − 1

N2E

2N − 1

N2ζ
]B2

t

+ σ2
Q

[
1

ζN2(1− e−r∆)
− b

N2(1− e−r∆)2

]
+ σ2

ε

[
− be−r

N(1− e−r∆)2
− b(N − 1)

N2(1− e−r∆)
+

1

NζE(1− e−r∆)
− 1

EζN2

]
.

Recall that an admissible strategy must lead to an inventory process that satisfies the

no-Ponzi scheme condition e−r∆tEi0[X2
it] → 0. Thus to show that e−r∆tEi0[V (Xit, Bt)] → 0

it suffices to show that e−r∆tEi0[BtXit]→ 0 and e−r∆tEi0[B2
t ]→ 0.

We have

e−r∆tEi0 [BtXit] = e−r∆tEi0

[
N

N − 1

∑
j 6=i

(
Xj,t−1 +

∑
e∈E

qje,t−1

)
Xit

]

= e−r∆tEi0

[
N

N − 1

(∑
j∈N

Xj,t−1 +
∑
e∈E

Qe,t−1 −Xi,t + εit

)
Xit

]

=
N

N − 1
e−r∆tEi0

[(∑
j∈N

Xj,t−1 +
∑
e∈E

Qe,t−1

)
Xit −X2

it

]
+ e−r∆t

N

N − 1
σ2
ε ,

where, for the first equality, we have used

N − 1

N
Bt =

∑
j 6=i

(
Xj,t−1 +

∑
e∈E

qje,t−1

)
,

and for the second equality we have used Xit = Xi,t−1 +
∑

e∈E qie,t−1 + εit. Since, by Cauchy-

48

Electronic copy available at: https://ssrn.com/abstract=3542574



Schwarz,

e−r∆tEi0

[(∑
j∈N

Xj,t−1 +
∑
e∈E

Qe,t−1

)
Xit

]
≤

√√√√√Ei0

(∑
j∈N

Xj,t−1 +
∑
e∈E

Qe,t−1

)2
 e−2r∆tE [X2

it],

it follows that

lim
t→∞

e−r∆tEi0

[(∑
j∈N

Xj,t−1 +
∑
e∈E

Qe,t−1

)
Xit

]
= 0.

Thus, limt→∞ e
−r∆tEi0[BtXit] = 0, as desired. That limt→∞ e

−r∆tEi0[B2
t ] = 0 can be shown

using the same method.

Step 6. We now verify that the optimal strategy of trader i is the conjectured equilibrium

strategy, coinciding with (45). For an arbitrary admissible strategy, which we denote l, let

qliet, p
l
et, X

l
it, and Bl

t denote, respectively, the induced quantity purchased on exchange e, the

price on exchange e, the inventory, and the belief at date t. By recursive substitution, using

the Bellman equation, for each t ∈ N,

Ei0 [V (Xi0, B0)] ≥ Ei0

 t∑
s=0

e−rs

µπ∆

(
X l
is +

∑
e∈E

qlies

)
− b

(
X l
is +

∑
e∈E

qlies

)2

−
∑
e∈E

pesq
l
ies


+ Ei0

[
e−r∆tV (X l

i,t+1, B
l
t+1)

]
.

By taking limits as t→∞, applying the transversality condition and Fatou’s Lemma,

V (Xi0, B0) ≥ Ei0

 ∞∑
s=0

e−r∆s

µπ∆

(
X l
is +

∑
e∈E

qlies

)
− b

(
X l
is +

∑
e∈E

qlies

)2

−
∑
e∈E

pesq
l
ies

 .
The right-hand side is the utility of the arbitrary strategy l, whereas the left-hand side is the

utility of the conjectured equilibrium strategy. This completes the proof of the Theorem.

F Extension: Endogeneous Liquidity Trade

This appendix offers an extension in which liquidity traders, who are local to each exchange

and conduct no cross-exchange trade, choose the sizes of their trades.
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F.1 Setup

In this section we extend the baseline model by allowing liquidity traders to endogenously

choose the quantity of market orders that they supply. There are M liquidity traders who

are each restricted to trade on a single exchange. We assume that M is divisible by E and

that a fraction 1/E of them trade on any given exchange. Liquidity trader j has endowment

Hj ∼ N(0,
1

M
σ2
H)

where the {Hj} are mutually independent. Suppose further that each liquidity trader j has

preferences of the same form that we have assumed for the strategic traders. If liquidity

trader j is restricted to trade on exchange e, his or her ex-ante expected utility of purchasing

hj units via a market order is

E[πhj − c(Hj + hj)
2 − hjpe |Hj, hj].

Above c ∈ R+ is the holding cost parameter of the liquidity traders. It is useful to think

of c being high relative to b, the holding cost parameter of strategic agents. Finally, for

simplicity, for this section only, we assume that µX = 0 and µπ = 0.

F.2 Analysis

Theorem 6. There exists a symmetric affine equilibrium. In any symmetric affine equilib-

rium the following are true.

1. The quantity of market orders submitted by agent j is

hj =
−cHj

c+ ΛE
N−1
N

.

2. For each e, e′ ∈ E distinct, the correlation between prices in the two exchanges from

the perspective of a strategic trader is

γE =
(EαE)2σ2

X(N − 1)

(EαE)2σ2
X(N − 1) + ( c

c+ΛE
N−1
N

)2σ2
HE

(68)

3. A strategic trader’s price impact satisfies

ΛE =
2b((E − 1)γE + 1)

N − 2
(69)
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while the price impact of a liquidity trader is

N − 1

N
ΛE. (70)

4. EαE satisfies

EαE =
1

γE( 1
N

+ 1
N−2

) + (1− γE) 1
E

( 1
N

+ 1
N−2

) + N−1
N

. (71)

Proof. We conjecture that there exists a symmetric affine equilibrium in which each strategic

trader i ∈ N submits a demand schedule of the form −αEXi− ζEp and each liquidity trader

j submits a market order of the form −α̃EHj. We study the best response problem of trader

j ∈M . Via market clearing, we can compute the market clearing price in exchange e is

pe =

∑
i∈N −αEXi −

∑
{k∈M | k 6=j} α̃EHk + hj

NζE

if all agents i ∈ N and k ∈M such that k 6= j behave as conjectured and agent j purchases

hj units on the exchange. Retaining the notation that ΛE = 1
(N−1)ζE

the price impact of

liquidity trader j is ΛE
N−1
N

. He seeks to maximize

E[πhj − c(Hj + hj)
2 − hjpe |Hj, hj] = −c(Hj + hj)

2 − ΛE
N − 1

N
h2
j

by choosing hj ∈ R. Taking a first order condition with respect to hj we have

−2c(Hj + hj)− 2hjΛE
N − 1

N
= 0,

which implies that

hj =
−cHj

c+ ΛE
N−1
N

.

Thus

α̃E =
c

c+ ΛE
N−1
N

.

If strategic traders take the variance of aggregate liquidity trade to be

σ2
Q =

(
c

c+ ΛE
N−1
N

)2

σ2
H ,

we see that the analysis of the baseline model applies. That is, strategic traders maximize
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by submitting affine demand schedules such that equations (68), (69) and (71) are satisfied.

Then the analysis of the baseline model therefore ensures that provided there exists αE

and γE which satisfies (68), (69), and (71), there exists a symmetric affine equilibrium with

the four properties given in the statement of the theorem. To show existence it suffices

to recognize that substituting expressions (69) and (71) into (68) and re-arranging yields a

cubic equation in γE. Since the equation is cubic there always exists at least one real root.

Thus there always exists a solution to the system of equations.

The above theorem has characterized a symmetric affine equilibrium of the model with

endogenous liquidity traders. The following proposition states some results relevant for

assessing the allocative efficiency of the symmetric affine eqiulibrium.

Proposition 5. The following are true of any symmetric affine equilibrium.

1. EαE ∈ [N−2
N−1

, N
N−1

] is always higher in fragmented markets than in centralized markets.

2. Fixing arbitrary E, in the limit as c tends to infinity, the expected sum of liquidity

traders’ holding costs tends to zero.

3. Fixing arbitrary E > 1, for all c sufficiently large, a market with E exchanges is more

efficient than a market with a single exchange in the sense that the expected sum of all

traders’ holding costs is lower.

4. For any E > 1, there exists an c such that if c > c then a market with 1 < E ≤ E

exchanges is more efficient than a market with a single exchange in the sense that the

expected sum of all traders’ holding costs is lower.

Proof. Centralized markets correspond to the case when E is 1. To prove Part 1, it is clear

by inspecting (71) that EαE ∈ [N−2
N−1

, N
N−1

]. Next recognize that in fragmented markets E > 1

and γE < 1 so that again by inspection, EαE is always higher in fragmented markets.

To prove part 2 recognize that, using part 1 of Theorem 6, the expected sum of liquidity

agents’ holding costs is

c

(
ΛE

N−1
N

c+ ΛE
N−1
N

)2

σ2
H ,

which decays to 0 as c diverges.

To prove part 3, fix E > 1 and inspect equation (68). Since EαE ∈ [N−2
N−1

, N
N−1

] there

exists a, b ∈ R such that 1 > b > a > 0 and γE ∈ [a, b] for all c sufficiently large. This

implies that | 1 − EαE | is bounded above by a constant strictly less than 1
N−1

whenever c

is sufficiently large. In the limit as c→∞ the aggregate quantity of liquidity trader supply
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absorbed by strategic traders when there is a single exchange as well as when there are E

exchanges becomes arbitrarily close to
∑

j∈M Hj. Therefore, by Proposition 5, in the limit

as c → ∞, the expected sum of holding costs is strictly lower when there are E exchanges

than when there is a single exchange since | 1− αE | < | 1− α1 | = 1
N−1

. However, the sum

of liquidity traders’ holding costs converges to 0 as c→∞. This implies the claim asserted

in Part 3 of the theorem.

Part 4 is an immediate implication of part 3.

We now prove the following proposition which implies that EαE must be strictly mono-

tone increasing in E at least until a certain cutoff point. As c increases the range that we

can prove that EαE is strictly monotone increasing in is larger.

Proposition 6. Fix E∗ ∈ N. If c is sufficiently large such that(
c

c+ 2bE∗

N−2
N−1
N

)2

>
E∗

E∗ + 1
,

then EαE is strictly monotone increasing for all E < E∗.

Proof. We begin by proving that (
c

c+ ΛE
N−1
N

)2

E

is strictly monotone increasing in E for all E < E∗. Since ΛE is bounded above by 2bE∗

N−2
we

have that (
c

c+ ΛE
N−1
N

)2

E >
E∗

E∗ + 1
E

for each E < E∗. Thus we have(
c

c+ ΛE+1
N−1
N

)2

(E + 1)−

(
c

c+ ΛE
N−1
N

)2

E >
E∗

E∗ + 1
(E + 1)− E

for each E < E∗. But the right hand side is equal to(
E∗

E∗ + 1
− 1

)
E +

E∗

E∗ + 1
>

(
E∗

E∗ + 1
− 1

)
E∗ +

E∗

E∗ + 1
= 0.

Now we prove that EαE is strictly monotone increasing at each E < E∗. Inspect the equation

(71). Suppose EαE is decreasing in E then it must be that γE is increasing. Consider now
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(68). Since ( c
c+ΛE

N−1
N

)2E is strictly monotone increasing and EαE is decreasing it must be

that γE is decreasing, a contradiction.

G Extension: Private Information about Asset Payoff

This appendix addresses an extension of the model in which strategic traders are asymmet-

rically informed about the asset payoff.

G.1 Setup

We alter the baseline model so that each agent has private information about the asset’s final

payoff, π ∼ N(µπ, σ
2
π). We assume the aggregate endowment of strategic traders, Z ≡

∑
iXi,

is public information. As before, liquidity traders supply a quantity Qe ∼ N(0,
σ2
Q

E
) to each

exchange, independent across exchanges. Strategic traders receive private signals of π:

Si = π + εi

where εi ∼ N(0, σ2
ε ) is i.i.d across individuals.

G.2 Analysis

Theorem 7. In any symmetric affine equilibrium with demand schedules which are each

monotone decreasing in price,

1. Each strategic trader i submits a demand schedule to each exchange e of the form

fie(Xi, p) = −αXi − ζp+ wSi + ∆.

where α, ζ, w, and ∆ are defined by the system of equations (73)—(80).

2. Price impact is

ΛE =
(2b[(E − 1)γ̃1 + 1] +N γ̃3

w
)

N − 2

where γ̃1 and γ̃3 are defined by equations (73) and (75).

3. The final inventory of strategic trader i is

Xi +
∑
e∈E

fie(Xi, p
f
e ) = (1−Eα)Xi +Eα

1

N

∑
j∈N

Xj +Ew

(
Si −

1

N

∑
j∈N

Sj

)
+

∑
e∈E Qe

N
.
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Proof. Conjecture a symmetric affine equilibrium in which agent i submits demand schedule

fie(Xi, p) = −αXi − ζp+ wSi + ∆

to exchange e ∈ E for each i ∈ N and e ∈ E. By market clearing the residual supply curve

trader i faces in exchange e is

pe(q) =
1

(N − 1)ζ

[∑
j 6=i

(−αXj + wSj + ∆)−Qe + q

]
.

Thus price impact is Λ = 1
(N−1)ζ

. Also by market clearing, the equilibrium price is

pfe =
1

Nζ

[∑
j∈N

(−αXj + wSj + ∆)−Qe

]
.

Going forward, let us define qfie := fie(Xi, p
f
e ) for each e ∈ E for ease of notation. In any

equilibrium, trader i must equate marginal utility with marginal cost for every realization

of the price:

−2b(Xi+qfi1 +(E−1)E[qfi2 | p
f
1−

1

(N − 1)ζ
qfi1, Xi, Si]) = pf1−E[π | pf1−

1

(N − 1)ζ
qfi1, Xi, Si]

+
1

(N − 1)ζ
qfi1. (72)

Above we have used symmetry. We now compute the two conditional moments E[qfi2 | p
f
1 −

1
(N−1)ζ

qfi1, Si, Xi] and E[π | pf1 − 1
(N−1)ζ

qfi1, Si, Xi] by using the projection theorem. We begin

with the former. We can, using the projection theorem, express

E

 ∑
{j∈N | j 6=}

Si | pf1 −
qfi1

(N − 1)ζ
, Si


= µπ(N − 1) + γ1(pf1 −

qfi1
(N − 1)ζ

− wµπ
ζ

+ α
Z −Xi

(N − 1)ζ
− ∆

ζ
) + γ2(Si − µπ).

Here, γ1 and γ2 are derived as follows. The variables,
∑

j 6=i Sj,Si, p
f
1 − 1

(N−1)ζ
qfi1 are jointly
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Gaussian with variance matrix

Σ =


(N − 1)2σ2

π + σ2
ε (N − 1) (N − 1)σ2

π
w
ζ
(σ2

π(N − 1) + σ2
ε )

(N − 1)σ2
π σ2

π + σ2
ε

w
ζ
σ2
π

w
ζ
(σ2

π(N − 1) + σ2
ε )

w
ζ
σ2
π

1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]

 .
Define

Σ ≡

[
σ2
π + σ2

ε
w
ζ
σ2
π

w
ζ
σ2
π

1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ],

]
with

Σ
−1

= [(σ2
π + σ2

ε )
1

ζ2
[w2(σ2

π +
σ2
ε

(N − 1)
) +

σ2
Q

E(N − 1)2
]− w2

ζ2
σ4
π]−1

×[
1
ζ2 [w2(σ2

π + σ2
ε

N−1
) +

σ2
Q

E(N−1)2 ] −w
ζ
σ2
π

−w
ζ
σ2
π σ2

π + σ2
ε

]
.

Define

Σ12 ≡
[
(N − 1)σ2

π
w
ζ
(σ2

π(N − 1) + σ2
ε )
]

By the rules of conditional normals[
γ2 γ1

]
= Σ12Σ

−1
.

This yields,

γ2 =

σ2
πσ

2
Q

E(N−1)

(σ2
π + σ2

ε )[w
2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2σ4
π

.

Note that 1
N−1

γ2 ∈ [0, 1]. Next, we have

γ1 = ζ
wσ2

πσ
2
ε (N − 1) + wσ2

ε (σ
2
π + σ2

ε )

(σ2
π + σ2

ε )[w
2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2σ4
π

Note that w
ζ(N−1)

γ1 ∈ [0, 1]. We have

E[qfi2 | p
f
1 −

1

(N − 1)ζ
qfi1, Si] = −αXi + wSi + ∆ +

αZ

N
− wSi

N
−∆

− w

N
[µπ(N − 1) + γ1(pf1 −

1

(N − 1)ζ
qfi1 −

wµπ
y

+ α
Z −Xi

(N − 1)ζ
− m

ζ
) + γ2(Si − µπ)].

Next, we move on to compute, E[π | pf1 − 1
(N−1)ζ

qfi1, Si, Xi]. We can, using the rules of condi-
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tional normals, express

E[π | pf1 −
qfi1

(N − 1)ζ
, Si] = µπ + γ3(p1 −

qfi1
(N − 1)ζ

− wµπ
ζ

+ α
Z −Xi

(N − 1)ζ
− ∆

ζ
) + γ4(Si − µπ).

The variables, π,Si, p
f
1 −

qfi1
(N−1)ζ

are jointly Gaussian with variance matrix

Σ =


σ2
π σ2

π
w
ζ
σ2
π

σ2
π σ2

π + σ2
ε

w
ζ
σ2
π

w
ζ
σ2
π

w
ζ
σ2
π

1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]

 .
Define

Σ ≡

[
σ2
π + σ2

ε
w
ζ
σ2
π

w
ζ
σ2
π

1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]

]
and

Σ12 ≡
[
σ2
π

w
ζ
σ2
π

]
Then [

γ4 γ3

]
= Σ12Σ

−1
.

We obtain,

γ4 =
σ2
π

1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2

ζ2 σ
4
π

(σ2
π + σ2

ε )
1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2

ζ2 σ4
π

,

and

γ3 =

w
ζ
σ2
πσ

2
ε

(σ2
π + σ2

ε )
1
ζ2 [w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

E(N−1)2 ]− w2

ζ2 σ4
π

.

Note that γ3
w

ζ(N−1)
∈ [0, 1] and γ4 ∈ [0, 1]. It is useful, for the analysis to follow, to redefine the

inference coefficients so that they all lie in the interval [0, 1]. Specifically, define γ̃1 = w
ζ(N−1)

γ1,

γ̃2 = 1
N−1

γ2, γ̃3 ≡ w
ζ(N−1)

γ3, and γ̃4 = γ4. Then

γ̃1 =
w2σ2

πσ
2
ε + w2σ2

ε (σ2
π+σ2

ε )
N−1

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
(73)

γ̃2 =

σ2
πσ

2
Q

E(N−1)2

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
. (74)
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γ̃3 =
w2σ2

π
σ2
ε

N−1

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
. (75)

γ̃4 =
σ2
π[w2(σ2

π + σ2
ε

(N−1)
) +

σ2
Q

(E(N−1)2 ]− w2σ4
π

w2[(σ2
π + σ2

ε )(σ
2
π + σ2

ε

N−1
)− σ4

π] +
σ2
Q

E(N−1)2 (σ2
π + σ2

ε )
. (76)

We can now use the equation (72) together with the conditional moments we just computed,

to match coefficients and pin down α, ζ, w, and ∆. The coefficient of qi1 gathered on to the

LHS is

−2b− 1

(N − 1)ζ
− 2b(E − 1)

1

N
γ̃1 −

γ̃3

w
.

The coefficient of p1 gathered on to the RHS is

1− 2b(E − 1)
1

N
γ̃1(N − 1)ζ − ζ (N − 1)γ̃3

w
.

The coefficient of Si gathered on to the RHS is

2b(E − 1)w(
N − 1

N
)(1− γ̃2)− γ4.

The coefficient of Xi gathered on to the RHS is

2b+ 2b(E − 1)[−α + α
γ̃1

N
] +

γ̃3

w
α.

The constant coefficient gathered on to the RHS is

2b(E − 1)[
αZ

N
− w

N
(µπ(N − 1) +

γ̃1αZ

w
− mγ̃1(N − 1)

w
− γ̃2(N − 1)µπ − γ̃1(N − 1)µπ)]

−µπ + γ̃3µπ(N − 1)− γ̃3αZ

w
+ γ̃3

(N − 1)m

w
+ γ̃4µπ

We now match coefficients to compute y as a function of γ̃1 and γ̃3:

ζ =
N − 2

N − 1

1

(2b[(E − 1)γ̃1 + 1] +N γ̃3

w
)
.

Price impact is therefore

1

(N − 1)ζ
=

(2b[(E − 1)γ̃1 + 1] +N γ̃3

w
)

N − 2
. (77)

58

Electronic copy available at: https://ssrn.com/abstract=3542574



Notice that compared with the model without private information about asset payoffs, there

is now a Nγ̃3

w
term which is a result of using the price in an exchange to do inference on the

asset’s payoff, π. We now match coefficients to derive a cubic equation which characterizes

w:

− 2b(E − 1)w
N − 1

N
(1− γ̃2) + γ4 =

w[2b+
(2b[(E − 1)γ̃1 + 1] + N

w
γ̃3)

N − 2
+ 2b(E − 1)

1

N
γ̃1 +

γ̃3

w
] (78)

We now match coefficients to compute α as a function of the inference coefficients:

α =
2b

2b+
(2b[(E−1)γ̃1+1]+N

γ̃3
w

)

N−2
+ 2b(E − 1) 1

N
γ̃1 + 2b(E − 1)(1− γ̃1

N
)
. (79)

We now match coefficients to compute ∆ as a function of the inference coefficients:

∆ = −[
2b(E − 1)[αZ

N
− w

N
(µπ(N − 1) + γ̃1αZ

w
− γ̃2(N − 1)µπ − γ̃1(N − 1)µπ)]

2b+ 1
(N−1)y

+ 2b(E−1)γ̃1

N
+ γ̃3

w
+ 2b(E−1)γ̃1(N−1)

N
+ γ̃3(N−1)

w

+
−µπ + γ̃3µπ(N − 1)− γ̃3αZ

w
+ γ̃4µπ

2b+ 1
(N−1)y

+ 2b(E−1)γ̃1

N
+ γ̃3

w
+ 2b(E−1)γ̃1(N−1)

N
+ γ̃3(N−1)

w

]. (80)

Thus equations (79), (77), (78), (80), (73), (74), (75), and (76) are necessary conditions

that any symmetric affine equilibrium must satisfy. An argument analogous to that of

Theorem 4 can be used to show that a solution to these equations constitute a symmetric

affine equilibrium provided that y is positive. Part 2 follows from equation (77). This

completes the proof of parts 1 and 2. We omit the proof of part 3 since it is a straightforward

computation.

Proposition 7. For any value of E, if there exists a symmetric affine equilibrium w > 0 if

ζ > 0.

Proof. Recall that a requirement of a symmetric affine equilibrium is that y is positive. The

cubic equation characterizing w is

γ̃4 − γ̃3 = w[2b+
1

ζ(N − 1)
+ 2b(E − 1)

1

N
γ̃1 + 2b(E − 1)(

N − 1

N
)(1− γ̃2)].

The left hand side is positive as seen by inspecting the equations defining the inference

coefficients. The bracketed term on the right hand side is also always positive if the demand

schedules are downward sloping since the inference coefficients are in the unit interval. Thus
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the only way for the cubic equation to be satisfied is if w is positive.

We now focus on characterizing how Ew and Eα change as E varies. In this model, the

efficient allocation is the same as that of the baseline model. Thus by Part 3 of Theorem 7,

perfect allocative efficiency is acheived if Ew = 0 and Eα = 1.

Proposition 8. The following are true.

1. There exists a unique symmetric affine equilibrium when E = 1.

2. When there is just a single exchange,

0 < w1 <
1

2b

σ2
π

σ2
π + σ2

ε

where w1 corresponds to the unique symmetric affine equilibrium.

3. There exist at least one and at most three symmetric affine equilibria for all E suffi-

ciently large.

4. For any sequence {EwE} corresponding to symmetric affine equilibria,

EwE →
1

2b

N

N − 1

σ2
π

σ2
ε

>
1

2b

σ2
π

σ2
π + σ2

ε

as E →∞.

5. For any sequence {EαE} corresponding to symmetric affine equilibria EαE → 1 which

is strictly greater than α1.

Proof. Part 1. When there is a single exchange,

w1 =
γ̃4 − (1 + N

N−2
)γ̃3

2b(1 + 1
N−2

)
. (81)

Rearranging (81), we derive

2b(1 +
1

N − 2
)w3[(σ2

π + σ2
ε )(σ

2
π +

σ2
ε

N − 1
)− σ4

π] + w2b(1 +
1

N − 2
)

σ2
Q

E(N − 1)2
(σ2

π + σ2
ε )

= σ2
π[w2(σ2

π +
σ2
ε

(N − 1)
) +

σ2
Q

E(N − 1)2
]− w2σ4

π − (1 +
N

N − 2
)w2σ2

π

σ2
ε

N − 1
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Thus, when E is 1, w1 satisfies a cubic equation with coefficients:

[w3
1] : 2b(1 +

1

N − 2
)[(σ2

π + σ2
ε )(σ

2
π +

σ2
ε

N − 1
)− σ4

π]

[w2
1] :

N

N − 2
σ2
π

σ2
ε

N − 1

[w1] : 2b(1 +
1

N − 2
)

σ2
Q

E(N − 1)2
(σ2

π + σ2
ε )

[constant] : −
σ2
πσ

2
Q

E(N − 1)2
.

Since the coefficient of w2
1 is positive, the coefficient of w3

1 is positive, and the constant is

negative, there always exists exactly one positive real root. Let p, q, and r denote the roots

of the cubic equation. Then pqr = − constant coefficient
coefficient of w3

1
> 0. Thus if there is one real root and

2 complex roots, the real root must be positive. If there are are three real roots, at least

one must be positive. Next, p+ q + r = − coefficient of w2
1

coefficient of w3
1
< 0 so if there are three real roots,

two must be negative and one must be positive. There always exists a unique positive real

root. Take this positive real root. For this value of w1, by (77), ζ1 is positive. An approach

analogous to that of Theorem 4 (which we omit) can then be used to verify that there is a

symmetric affine equilibrium corresponding to this value of w1. Since it is the unique positive

real root, the equilibrium must be unique since (81) is a necessary condition which must be

satisfied in any symmetric affine equilibrium.

Part 2. We rearrange (76) to derive

γ̃4 =
σ2
π(w2(σ2

π + σ2
ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π

(σ2
π + σ2

ε )(w
2(σ2

π + σ2
ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π

<

σ2
π

σ2
π+σ2

ε
[(σ2

π + σ2
ε )(w

2(σ2
π + σ2

ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π]

(σ2
π + σ2

ε )(w
2(σ2

π + σ2
ε

N−1
) +

σ2
Q

N−1
)− w2σ2

π

=
σ2π

σ2
π + σ2

ε

.

Inspecting (81) together with the above inequality gives the result.
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Parts 3 and 4. Rearranging equation (78), we derive

wE =
γ̃4 − (1 + N

N−2
)γ̃3

2b+ 2b
N−2

+ 2b(E − 1)( 1
N

+ 1
N−2

)γ̃1 + 2b(E − 1)(N−1
N

)(1− γ̃2)
.

we observe that |wE | is less than C
E

for large E for some constant C since γ̃2 is by inspection

bounded away from 1 (we can derive a bound which holds for all E) and the numerator is

bounded above by 2 + N
N−2

. Thus, it must be the case that γ̃4 → σ2
π

σ2
π+σ2

ε
in the limit as

E →∞. By inspection γ̃1 and γ̃3 converges to 0 while γ̃2 → σ2
π

σ2
π+σ2

ε
. We can express

EwE =
γ̃4 − (1 + N

N−2
)γ̃3

2b+ 2b
N−2

E
+ 2b (E−1)

E
( 1
N

+ 1
N−2

)γ̃1 + 2b (E−1)
E

(N−1
N

)(1− γ̃2)
.

Thus in the limit as E →∞,

EwE →
1

2b

1
N−1
N

σ2
ε

σ2
π+σ2

ε

σ2
π

σ2
ε + σ2

π

=
1

2b

N

N − 1

σ2
π

σ2
ε

.

Note that this implies that for large enough E, any real root of the cubic equation for wE

must be positive, which by (77) implies that ζE is positive for any real root. An argument

analogous to Theorem 4 can then be used to verify that there is a symmetric affine equilibrium

corresponding to any positive root of the cubic equation for wE. Since a cubic equation always

has at least one real root and at most three, there always exists at least one and at most

three symmetric affine equilibrium for E sufficiently large.

Part 5. Using earlier results we can write

EαE =
2bE

2b+
(2b[(E−1)γ̃1+1]+ N

N−1
γ̃3)

N−2
+ 2b(E − 1) 1

N
γ̃1 + γ̃3

1
(N−1)

+ 2b(E − 1)(1− γ̃1

N
)
.

Thus, if σ2
Q > 0, as E →∞,

EαE → 1.

When E = 1,

α1 =
2b

2b+
2b+

γ̃3
w1

N−2
+ γ̃3

w1(N−1)

< 1.

Thus, an increase in fragmentation means a more efficient redistribution of endowments, at

least in the limit.
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Next, we give a coarse analysis of welfare which compares the expected holding costs of

strategic agents as E tends infinity with the case of centralized exchange when E = 1.

Proposition 9. If σ4
π

σ2
ε

is sufficiently small, then for all E sufficiently large the allocation of

any symmetric affine equilibrium is more efficient than the allocation of the unique symmetric

affine equilibrium when E is 1.

Proof. By symmetry it suffices to study the expected holding cost of an individual agent.

Recall, in what follows, that we have assumed for simplicity that the mean of the liuqidity

trader supply is zero. The expected holding cost of an agent is

E

b((1− EαE)Xi + EαE
Z

N
+ EwE(Si −

1

N

∑
j∈N

Sj) +

∑
e∈E Qe

N

)2
 =

b
(
(1− EαE)Xi + EαE

Z

N
)2 + (EwE)2

(
(
N − 1

N

)2
+
N − 1

N2

)
σ2
ε +

σ2
Q

N2

Consider taking a limit as E →∞ of the above expression. Then we obtain

b
Z2

N2
+
σ2
Q

N2
+ (

1

2b

N

N − 1
)2σ

4
π

σ2
ε

(
(
N − 1

N
)2 +

N − 1

N2

)
The only difference between this expected holding cost and the expected holding cost at the

efficient allocation is the last term. Thus when σ4
π

σ2
ε

is small, a large level of fragmentation is

preferred to centralized exchange.

H Extension: Arbitrary Covariance Matrix

In this appendix, we extend the baseline model to allow for correlation among the primitive

asset quantities {X1, . . . , XN , Q1, . . . , QE} setting the sizes of trading interests. This model

variant nests the baseline model. Consequently, many of the proofs are quite similar.

H.1 Setup

We retain the same model setup as in the baseline but alter the assumptions about the

joint distribution of (X1, . . . , XN , Q1, . . . , QE). We assume that Q = C +
∑

e∈E ξe and

Qe = C
E

+ ξe for each e ∈ E, where C and {ξe}e∈E are random variables in L2(Ω,F ,P).

Here, C is the component of liquidity trader supply which is common across exchanges and

ξe is the component idiosyncratic to exchange e. We assume that the distribution of C

does not depend on E and that {ξe}e∈E is a collection of i.i.d, Gaussian distributed random
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variables with a mean of 0 and variance of
σ2
ξ

E
that are independent of X1, . . . , XN , and C.

Under these assumptions, the distribution of Q does not depend on E. Next, we assume

that X1, . . . , XN , C are jointly Gaussian with E[C] = µQ, var[C] = ρ, cov(Xi, Xj) = Σ for all

i, j ∈ N such that i 6= j, and cov(Xi, C) = η, E[Xi] = µX , and var[Xi] = σ2
X for all i ∈ N .

For the distribution to be well defined, ρ, Σ, η, and σ2
X are such that the covariance matrix

of X1, . . . , XN , C is positive definite.

H.2 Analysis

Lemma 8. The condition, σ2
X + (N − 1)Σ > 0, holds.

Proof of Lemma 8. The covariance matrix of (X1, . . . , XN) is positive definite. Denote the

covariance matrix VX . Each element of the diagonal of VX is σ2
X while all other elements are

Σ. This implies that 1TVX1 = N [σ2
X +(N−1)Σ] > 0 where 1 is an N×1 vector of ones.

Theorem 9. For each E ∈ N, there exists at least one and up to three symmetric affine

equilibria. If either η ≥ 0 or σ2
ξ = 0, there is a unique symmetric affine equilibrium. Given an

arbitrary E ∈ N let (αE, ζE,∆E) be an arbitrary corresponding symmetric affine equilibrium.

Then αE, ζE, and ∆E satisfy equations (96), (97), and (98). Moreover:

1. For each e ∈ E,

ΛE =
2b(1 + γE(E − 1))

N − 2

where

γE ≡ corrXi(p
∗
e, p
∗
k)

for k 6= e such that k ∈ E.

2. Price in exchange e ∈ E is

p∗e =
N − 1

N
ΛE[
∑
i∈N

−αEXi −Qe +N∆E].

3. The final asset position of trader i ∈ N is

(1− EαE)Xi + EαE

∑
i∈N Xj

N
+
Q

N
.

4. If σ2
ξ = 0 or E = 1, for each E ∈ N, the equilibrium allocation corresponds with that

of the centralized benchmark.
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5. If σ2
ξ > 0, given an arbitrary sequence of symmetric affine equilibria, {(αE, ζE,∆E)}E∈N,

we have

EαE →
N

N − 1

1 + η
Nσ2

X

1− Σ
σ2
X

.

Proof of Theorem 9. The proof proceeds in 3 steps. In the step 1 we compute some relevant

moments corresponding to a symmetric affine equilibrium, (αE, ζE,∆E). In step 2, we sub-

stitute the derived moments from step 1 into the optimality condition for a traders’ demand

submission problem and match coefficients to derive a system of three equations for αE, ζE,

and ∆E. In step 3 we prove existence and uniqueness of a symmetric affine equilibrium and

parts 1 through 5.

Step 1: To begin we conjecture an arbitrary symmetric affine equilibrium (αE, ζE,∆E)

in which each trader submits a demand schedule of the form in (2) to each exchange e. For

ease of notation define

qfie := fie(Xi, p
f
e ).

We compute the following unconditional moments.

E[
−αE(

∑
iXi) +mN −Qe′

yN
] =
−αEµX + ∆E

ζE
− µQ
EζEN

(82)

E[

∑
j 6=i−αEXj

ζE(N − 1)
− Qe

ζE(N − 1)
+

∆E

ζE
] =
−αEµX + ∆E

ζE
− µQ
EζE(N − 1)

(83)

var[
∑
i

Xi] = Nσ2
X + 2Σ

N∑
i=1

(i− 1) = Nσ2
X + Σ(N − 1)N (84)

Using the above moments we can then compute the following moments, conditional on

Xi, using the projection theorem.

E[
−αE(

∑
iXi) + ∆EN −Qe′

ζEN
|Xi] =

−αEµX + ∆E

ζE
− µQ
EζEN

+

1
ζEN

(−αE(N − 1)Σ− αEσ2
X −

η
E

)

σ2
X

(Xi − µX) (85)
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E[
(
∑

j 6=i−αEXj)−Qe + ∆E(N − 1)

ζE(N − 1)
|Xi] =

−αEµX + ∆E

ζE
− µQ
EζE(N − 1)

+

1
ζE(N−1)

(−αEΣ(N − 1)− η
E

)

σ2
X

(Xi − µX) (86)

var[−αE(
∑
j 6=i

Xj) + ∆E(N − 1)−Qe′ |Xi] =

α2
E(N − 1)σ2

X + α2
EΣ(N − 2)(N − 1) +

ρ

E2
+
σ2
ξ

E
+

2ηαE(N − 1)

E
−

[(−αEΣ(N − 1)− η
E

)]2

σ2
X

(87)

covXi(
∑
j

−αEXj −Qe′ ,
∑
j 6=i

−αEXj −Qe) =

var[
∑
j 6=i

−αEXj |Xi]− 2covXi(Qe′ ,
∑
j 6=i

−αEXj) + covXi(Qe′ , Qe) (88)

Using the above moments, we compute the following moments, conditional on Xi and

pfe − Λqfie, (the portion of price in exchange e which is unknown to agent i—see equation

(94)) by using the projection theorem. We have,

E[pfie′ | p
f
e −

qfie
y(N − 1)

, Xi] =

(1− N − 1

N
γE)
−αEµX + ∆E

ζE
− (1− γE)

µQ
EζEN

+ (1− γE)

1
ζEN

(−αE(N − 1)Σ− η
E

)

σ2
X

(Xi−µX)

+
−αEXi

ζEN
+
N − 1

N
γEp

f
e − γE

qfie
ζEN

(89)

E[qfie′ | p
f
e −

qfie
ζE(N − 1)

, Xi] =

− αEXi
N − 1

N
− (1− N − 1

N
γE)(−αEµX + ∆E) + (1− γE)

µQ
EN

− (1− γE)
1
N

(−αE(N − 1)Σ− η
E

)

σ2
X

(Xi − µX)− N − 1

N
γEζEp

f
e + γE

qfie
N

+ ∆E (90)

66

Electronic copy available at: https://ssrn.com/abstract=3542574



Above, γE denotes

covXi(
∑

i−αEXi −Qe,
∑

j 6=i−αEXj −Qe′)

var[
∑

j 6=i−αEXj −Qe |Xi]
. (91)

Of course, E[qfie′ | pfe −
qfie

ζ(N−1)
, Xi] could have been computed in one step by just a single

application of the projection theorem, but we found it less algebraicly taxing to apply the

projection theorem twice. To finish deriving E[qfie′ | pfe −
qfie

ζ(N−1)
, Xi], we must compute an

expression for γE. The denominator was computed earlier in equation (6). To compute the

numerator, we make use of the decomposition in equation (88). The terms
∑

j 6=iXj, Q
′
e, Qe,

and Xi are jointly normally distributed with covariance matrix

Σ =


(N − 1)σ2

X + Σ(N − 2)(N − 1) η(N−1)
E

η(N−1)
E

Σ(N − 1)
η(N−1)

E
ρ
E2 +

σ2
ξ

E
ρ
E2

η
E

η(N−1)
E

ρ
E2

ρ
E2 +

σ2
ξ

E
η
E

Σ(N − 1) η
E

η
E

σ2
X

 .

The goal is to derive the covariance matrix of
∑

j 6=iXj, Qe′ , Qe conditional on Xi, which

we denote Σ̃. To do this we can apply the projection theorem. Then

Σ̃ =
(N − 1)σ2

X + Σ(N − 2)(N − 1) η(N−1)
E

η(N−1)
E

η(N−1)
E

ρ
E2 +

σ2
ξ

E
ρ
E2

η(N−1)
E

ρ
E2

ρ
E2 +

σ2
ξ

E

−
Σ(N − 1)

η
E
η
E

 1

σ2
X

[
Σ(N − 1) η

E
η
E

]
⇔

Σ̃ =
(N − 1)σ2

X + Σ(N − 2)(N − 1) η(N−1)
E

η(N−1)
E

η(N−1)
E

ρ
E2 +

σ2
ξ

E
ρ
E2

η(N−1)
E

ρ
E2

ρ
E2 +

σ2
ξ

E

− 1

σ2
X

Σ2(N − 1)2 Ση(N−1)
E

Ση(N−1)
E

Ση(N−1)
E

η2

E2
η2

E2

Ση(N−1)
E

η2

E2
η2

E2


From above, we have

covXi(−αEXi +
∑
j 6=i

−αEXj −Qe′ ,
∑
j 6=i

−αEXj −Qe)

= α2
E((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N − 1)2

σ2
X

) +
2αEη(N − 1)

E
(1− Σ

σ2
X

) +
ρ

E2
− η2

E2σ2
X

.
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We finally derive that

γE =

α2
E((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2αE
η
E

(N − 1)(1− Σ
σ2
X

) + ρ
E2 − η2

E2σ2
X

α2
E((N − 1)σ2

X + Σ(N − 2)(N − 1)) + ρ
E2 +

σ2
ξ

E
+ 2 η

E
αE(N − 1)−

(
−αEΣ(N−1)− η

E

)2

σ2
X

.

(92)

This concludes step one.

Step 2. By market clearing, we have

pfe =
−αE(

∑
iXi) + ∆EN −Qe

ζEN
. (93)

Also by market clearing, the residual supply curve trader i faces in exchange e is

pe(q) =
−αE(

∑
j 6=iXi) + q + ∆E(N − 1)−Qe

ζE(N − 1)
. (94)

This implies that the price impact agent i faces in exchange e is Λ := 1
ζE(N−1)

, which by

symmetry, is the price impact each agent i faces in all exchanges. In equilibrium trader i

equates his expected marginal utility conditional on pfe −
qfie

ζE(N−1)
and Xi, with his marginal

cost. That is

µπ − 2b(Xi + qfie + (E − 1)E[qfi2 | pfe −
qfie

ζE(N − 1)
, Xi]) = pfe + Λqfie. (95)

Substiting equation (90) into (95) and matching coefficients we obtain a system of three

equations which characterize the three unknowns, αE, ζE, and ∆E. We do not explicitly list

the algebraic steps here. Matching the coefficients on price, we obtain

ζE =
1

2b((E − 1)γE + 1)

N − 2

N − 1
. (96)

Matching the coefficients on Xi we obtain

αE =
1 + (E − 1)

(1−γE) η
E

Nσ2
X

1 + γE(E−1)
N

+ (E−1)γE+1
N−2

+ (E − 1)N−1
N
− (1− γE)(E − 1)N−1

N
Σ
σ2
X

. (97)
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Matching the constant coefficients, we obtain

∆E =
N − 2

N − 1

µπ − 2b(E − 1)µX(
(1−γE)µQ

EN
− (1−γE) 1

N
(αE(N−1)Σ+ η

E
)

σ2
X

+ αE(1− N−1
N
γE))

2b(1 + γE(E − 1))
(98)

Above, γE, as we saw in equation (92) is dependent on αE. By inspecting (97) and

(92) we see that αE satisfies a cubic equation. It is clear that a neccessary condition for

(αE, ζE,∆E) to be a symmetric affine equilibrium is that αE, ζE, and ∆E satisfy the above

equations (since otherwise the distributional assumptions ensure that the condition (95) is

violated on a set of strictly positive P-measure). This concludes step 2.

Step 3. By Theorem 4, equations (97), (96), and (98) are necessary and sufficient con-

ditions for (αE, ζE,∆E) to be a symmetric affine equilibrium. To prove existence of at least

one and up to three such symmetric affine equilibria, it suffices to observe from (97) and (92)

that αE satisfies a cubic equation which must have at least one real root and up to three real

roots. We now prove uniqueness of the equilibrium when η ≥ 0. Fix E ≥ 1, denote y ≡ αE,

and define

g(y) ≡ y −
1 + E−1

E
(1−γE)η

Nσ2
X

EγE( 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

) + (1− γE)( 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

) + EN−1
N

(1− Σ
σ2
X

)
.

There exists a symmetric affine equilibrium for each y positive such that g(y) = 0. Using

the assumption that η ≥ 0, the second term in the above expression is strictly monotone

decreasing in γE. By multiplying the numerator and denominator in equation (92) by E2 we

see that γE is strictly monotone increasing in y. Thus g(y) is strictly monotone increasing

in y. Hence there can exist at most one value of y ∈ R such that g(y) = 0.

We now prove the remaining parts of the theorem. Part 1 follows immediately from (96).

Part 2 follows immediately from (94). Part 3 of the theorem is true of any symmetric affine

equilibrium independent of the joint distribution of the random variables and the proof is

analogous to that of Theorem 1. Part 4 follows from part 3 and (97) when substituting in

γE = 1 which is the value γE takes on when σ2
Q = 0. To prove part 5, observe that using

Proposition 11, γE → 0. By equation (97),

EαE =
1 + (E−1)

E
(1−γE)η

Nσ2
X

1
E

+ γE(E−1)
EN

+ (E−1)γE+1
E(N−2)

+ (E − 1)N−1
EN
− (1− γE)(E − 1)N−1

EN
Σ
σ2
X

.

Since γE → 0, EαE →
1+ η

Nσ2
X

N−1
N

(1− Σ

σ2
X

)
.
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Corollary 9.1. Let {EαE}E∈N be defined as in Theorem 9. Then −ElE converges to a

constant that exceeds 1 if and only if σ2
ξ > 0 and η > −[σ2

X+(N−1)Σ], where, by the positive

definiteness of the covariance matrix of X1,...,XN , we have σ2
X+(N−1)Σ ≥ 0. Further, EαE

converges to a constant that exceeds N−1
N−2

if and only if σ2
ξ > 0 and η > −[σ2

X + (N − 1)Σ].

Proof of corollary 9.1. Theorem 9 supplies a closed form expression for the limiting value of

EαE as E →∞. The rest of the proof is a simple computation.

Proposition 10. Let

E∗ ≡
−

(N−1)σ2
X+Σ(N−2)(N−1)−Σ2(N−1)2

σ2
X

+2η(N−1)(1− Σ

σ2
X

)+ρ− η2

σ2
X

N−2
− σ2

ξ (
1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

)− σ2
ξ

η
Nσ2

X

σ2
ξ
N−1
N

(1− Σ
σ2
X

)− σ2
ξ (1 + η

Nσ2
X

)
.

If E∗ is in N, there is a unique symmetric affine equilibrium when E = E∗ whose allocation

is the efficient allocation. If η ≥ 0, by Theorem 9, there is a unique symmetric affine

equilibrium allocation associated with each E ∈ N. The E ∈ N whose symmetric affine

equilibrium is most efficient (more efficient than that of any E ′ ∈ N with E ′ 6= E) is either

bE∗c or dE∗e.

Proof of proposition 10. Let (αE, ζE,∆E) denote an arbitrary symmetric affine equilibrium.

Define gE ≡ EαE. Substituting equation (92) into (97) and rearranging yields a cubic

equation in gE with coefficients

[g3
E] : A(1 +

1

N − 2
)

[g2
E] : B(1 +

1

N − 2
)− A

[gE] : F (1 +
1

N − 2
) + σ2

ξ (
1

N
+

1

N − 2
+
N − 1

N

Σ

σ2
X

) + σ2
ξE

N − 1

N
(1− Σ

σ2
X

)−B

[constant] : −F − Eσ2
ξ (1 +

η

Nσ2
X

) + σ2
ξ

η

Nσ2
X

where

A ≡ ((N − 1)σ2
X + Σ(N − 2)(N − 1)− Σ2(N − 1)2

σ2
X

),

B ≡ 2η(N − 1)(1− Σ

σ2
X

)

and

F ≡ ρ− η2

σ2
X

.
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By definition, at E∗, gE∗ = 1. Therefore, we have

A(1 +
1

N − 2
) +B(1 +

1

N − 2
)− A+ F (1 +

1

N − 2
)

+σ2
ξ (

1

N
+

1

N − 2
+
N − 1

N

Σ

σ2
X

)+σ2
ξE
∗N − 1

N
(1− Σ

σ2
X

)−B−F−E∗σ2
ξ (1+

η

Nσ2
X

)+σ2
ξ

η

Nσ2
X

= 0.

Solving for E∗ we obtain,

E∗ =
−A+B+F

N−2
− σ2

ξ (
1
N

+ 1
N−2

N−1
N

Σ
σ2
X

)− σ2
ξ

η
Nσ2

X

σ2
ξ
N−1
N

(1− Σ
σ2
X

)− σ2
ξ (1 + η

Nσ2
X

)
.

That the E ∈ N whose symmetric affine equilibrium allocation is most efficient is either bE∗c
or dE∗e when η ≥ 0 follows from proposition 14.

Proposition 11. For each E ∈ N denote an arbitrary corresponding symmetric affine equi-

libria, {(lE, ζE,∆E)}e∈E. Let ΛE be the corresponding equilibrium price impact and γE the

equilibrium inference coefficient. Then, if σ2
ξ = 0, {ΛE}E∈N diverges to ∞ and {γE}E∈N is

the constant sequence of ones. If σ2
ξ > 0, {ΛE}E∈N converges to

2b+ 1
σ2
ξ
[(

1+ η

Nσ2
X

N−1
N

(1− Σ

σ2
X

)
)2((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2N(1 + η
Nσ2

X
)η + ρ− η2

σ2
X

]

N − 2

while {γE}E∈N converges to 0.

Proof of propostion 11. The claims when σ2
ξ = 0 are obvious in light of Theorem 9. We

prove the claims when σ2
ξ > 0. By inspecting equation (97), and recognizing that Lemma 8

implies that 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X
> 0, we see that

| 1 + E−1
E

(1−γE)η

Nσ2
X
|

E(N−1
N

(1− Σ
σ2
X

) + 1
N

+ 1
N−2

+ N−1
N

Σ
σ2
X

)
< |αE | <

1 + E−1
E

(1−γE) | η |
Nσ2

X

EN−1
N

(1− Σ
σ2
X

)
.

Inspecting the equation (92), we see that for large E, the numerator of γE is O( 1
E2 ) while the

denominator, because of the
σ2
ξ

E
term, is ω( 1

E2 ) so that γE → 0. To prove that ΛE converges

to a positive constant, we can express EγE as

E
E2α2

E((N − 2)σ2
X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2EαEη(N − 1)(1− Σ
σ2
X

) + ρ− η2

σ2
X

E2α2
E + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2EαEη(N − 1)(1− Σ
σ2
X

) + ρ− η2

σ2
X

+ Eσ2
ξ

.

By Theorem 9, −ElE converges so by inspection it is clear that EγE must converge. Since
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both E − 1 and γE are always weakly positive, and ΛE = 2b(1+γE(E−1))
N−2

, it must converge to

a strictly positive constant. We can directly compute this constant using part 5 of Theorem

9 to be:

2b+ 1
σ2
ξ
[(

1+ η

Nσ2
X

N−1
N

(1− Σ

σ2
X

)
)2((N − 1)σ2

X + Σ(N − 2)(N − 1)− Σ2(N−1)2

σ2
X

) + 2N(1 + η
Nσ2

X
)η + ρ− η2

σ2
X

]

N − 2
.

Proposition 12. Suppose η ≥ 0. For each E ∈ N, let ΛE denote the equilibrium price

impact in the unique symmetric affine equilibrium. The sequence, {−ΛE}E∈N, is strictly

monotone increasing.

Proof of proposition 12. The proof is analogous to that of Proposition 1 so we omit it.

Proposition 13. The total expected payment of liquidity traders is

N − 1

N
ΛE(−µQN∆E + σ2

ξ +
ρ+ µ2

Q

E
− αEN(η + µXµQ)).

Proof of propostion 13. We compute

−E[
∑
e∈E

p∗eQe] = −N − 1

N
ΛEE[

∑
e∈E

(
∑
i∈N

−αEXi +N∆E −Qe)Qe]

=
N − 1

N
ΛE(−µQN∆E + σ2

ξ +
ρ+ µ2

Q

E
+ αEN(η + µXµQ)).

Proposition 14. Suppose σ2
ξ > 0 and η ≥ 0. For each, E ∈ N, denote the unique symmetric

affine equilibrium, (αE, ζE,∆E). The sequence, {EαE}E∈N, is strictly monotone increasing.

Proof of proposition 14. The proof is analogous to that of part 6 of Theorem 1.
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