Representation and Forest Conservation: Evidence from India’s Scheduled Areas

Saad Gulzar
Apoorva Lal
Benjamin Pasquale

Oct. 2021
Working Paper No. 1095
Representation and Forest Conservation:
Evidence from India’s Scheduled Areas

Saad Gulzar Apoorva Lal Benjamin Pasquale
Stanford Stanford Independent Researcher*

October 19, 2021

Abstract

Scholars have found mixed evidence on how representation affects conservation. We posit that this is because representative institutions rarely amplify the voice of marginalized communities. We study a 1996 law that created local government with mandated representation for India’s Scheduled Tribes, a community of 100 million. Using difference-in-differences designs, we find that the dramatic increase in ST representation led to a large reduction in deforestation and also increased tree cover. We present suggestive evidence that representation enabled marginalized communities to better pursue their interests, which, unlike commercial operations, are compatible with forest conservation. While conservation policy tends to stress environmentally-focused institutions, we suggest more attention be given to umbrella institutions, such as political representation, which can address conservation and development of local communities in tandem.

*Gulzar is Assistant Professor, Stanford University (gulzar@stanford.edu). Lal is PhD candidate, Stanford University (apoorval@stanford.edu). Pasquale is an Independent Researcher (bjpasquale@gmail.com). We thank Rikhil Bhavnani, Mark Buntaine, Saumitra Jha, Teevrat Garg, Alexandra Hartman, Steve Haber, Paul Novosad, Jonathan Rodden, Daniel Thompson, Gilles Verniers, and participants at the pre-APSA mini-conference on South Asia 2019, Asoka University, CEGA Evidence to Action Summit 2020, Oxford, Pacific Conference for Development Economics 2020, Stanford Democracy Policy Lab, University of Minnesota, UCL, and Pia Raffler’s replication class at Harvard, including Sachet Bangya, Byron Cohen, Chengyu Fu, and Kartik Srivastava for their valuable comments and suggestions. Surbhi Ghai and Nikhil Konatham provided excellent research assistance.
1 Introduction

Deforestation and degradation of forests exacerbates climate change accounting for 10-15% of global carbon dioxide emissions (Asner et al. 2010). Indigenous populations, while only five percent of the global population, manage a quarter of Earth’s land surface and support 80 percent of its biodiversity including forests (Garnett et al. 2018). They also depend on forests for their livelihoods – in just India, Indonesia, Nepal, the Philippines, Sri Lanka, and Thailand about 447 million poor and marginalized individuals depend on forests (Lynch and Talbott 1995). As such, policy designers should balance marginalized populations’ economic livelihoods in these areas with the need to guarantee renewable resources like forests for future generations.

This paper examines an institution that is explicitly designed to take an umbrella approach to the dual policy problems of improving development outcomes for marginalized and poor communities living in proximity to natural resources, with the conservation of those very resources. We examine elected bodies under whose aegis lies both the protection and use of forest resources, as well as the implementation of large-scale government programs. We use the rollout of these institutions to study their effects on forest cover and deforestation using a difference-in-differences design.

Theoretically, it is unclear whether increasing representation for marginalized local communities will increase environmental resources extraction or conservation. While, work since Ostrom (1990) argues environmental governance may be quite effective with local control, evidence from a variety of contexts has been mixed. We argue that the mixed effects of democratic decentralization in the literature may be driven by institutional arrangements that provide authority to local decision makers, but do not make adequate arrangements to truly boost the voice of marginalized communities in resource management.

We examine the case of India, a critical context to study the effects of political representation on deforestation. Of India’s total population, 66% live in rural areas and 275 million individuals depend on the use of forest resources (Choudhury 2019). A further 100 million are associated with the Scheduled Tribe (ST) identity category, grouping representing, on average, India’s most economically vulnerable and politically excluded, who live in, and near, heavily forested areas. ST have similarities
to the many indigenous communities around the world who rely on forest produce to meet their caloric intake, sell minor forest products to earn a livelihood, and practice sustainable agriculture (Kashwan 2017; Zimmerman et al. 2001).

In the Fifth Schedule of the Constitution, the post-Independence Government of India declared certain regions as ‘Scheduled Areas,’ a territorial designation linked to the customary rights of the Scheduled Tribes (ST). In 1996, India’s parliament passed the Panchayat Extension to Scheduled Areas Act (PESA), extending local government councils to Scheduled Areas. PESA also introduced an electoral quota that requires all chairperson positions, as well as at least half the seats, on each local government councils to be reserved for ST individuals. In other, non-Scheduled Areas of India, local government had already been formalized under the 73rd Amendment in 1992 (Panchayat Raj Act), but without the same systematic mandated representation for ST.1 We study the impact of increased political representation through the arrival of local government, and mandated representation for ST, on deforestation.

Estimating the causal effects of political institutions on forest outcomes is difficult for several reasons. First, political institutions are usually implemented simultaneously over large administrative units (for example, an entire country). Second, when not implemented everywhere, institutions are introduced in areas that are unique. Both of these issues create problems for the construction of suitable counterfactuals, making the attribution of resulting effects to the institution difficult – first because of an absence of a contemporaneous counterfactual, and second because potential outcomes in counterfactual may be trending differently over time. The dramatic increase in representation for ST under PESA, in already established Scheduled Areas, presents a unique opportunity to study the impact of increased representation on forest outcomes. We use the staggered adoption of PESA institutions across states, and within-state variation in Scheduled Areas vs. non-Scheduled Areas, in a difference-in-differences framework that enables us to isolate the causal effect of ST mandated representation.

1The Panchayat Raj Act did introduce some quotas for ST in local government, but only in proportion their local population, and on a rotating basis, which has been identified as a weakness in the existing literature (Dunning and Nilekani 2013).
sentation on forest outcomes.

In addition to the challenge of causal identification, until recently social scientists have been unable to study systematic local changes in forest outcomes over large areas, and over long periods of time. While early work, such as sections of seminal books by Ostrom (1990) and Ellickson (1991), made use of detailed case-studies and fieldwork in small communities, political scientists have seldom used novel remote-sensing micro data that have recently become available from satellites such as LANDSAT, Sentinel, and DMSP. We introduce the use of two such datasets – the MEaSURES Vegetation Continuous Fields (henceforth VCF) dataset available for 1982-2016 (Song et al. 2018) and the Global Forest Cover (henceforth GFC) dataset available for 2001-2017 (Hansen et al. 2013) – and advocate for greater use in political science of such large scale, high throughput datasets produced by environmental scientists and geographers (Agrawal and Chhatre 2006).

Our main finding is that boosting formal representation for ST led to both a 30% percent reduction in deforested area, and an increase of average tree canopy by 5.5%. These effects are larger for areas that had more forest cover at the start of the study period. We further show that our observed effects arise only after the introduction of PESA elections that mandate quotas for ST.

Next, we compare the impacts of PESA legislation with other legal reforms that institute some, but not all, elements of PESA. First, we leverage the staggered roll out of local government across non-Scheduled Areas, with the introduction of Panchayati Raj Institutions from 1993, to show that the presence of local government by itself, absent mandated representation, had no conservation effects. Second, we show that the implementation of the Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006 (or Forest Rights Act) – which was intended to bolster ST rights to forest lands – had no discernible additional impacts beyond those caused by PESA. Overall we show that neither local representation, nor the legal provision of forest rights, are sufficient – only with a boost in ST communities’ political power do we see an increase in forest conservation.

We also provide suggestive evidence in support of two mechanisms that link ST representation leads to lower deforestation: We present qualitative and quantitative evidence to suggest that, under PESA, ST are able to better pursue their economic interests which in turn leads to better forest conser-
vation, a mechanism we call forest stewardship. By gaining political power, ST are able to thwart timber and other industrial interests, pursue their own collection and sale of non-timber forest products, in so doing serve improve the overall health of forests.

Additionally we find support for a mechanism of opposing commercial interests, where a dramatic increase to ST representation enables ST communities to resist mining and other large scale commercial operations. First, consistent with historical and anthropological research, as well as popular accounts from these regions of India, we find that areas that are close to mines, prior to the implementation of PESA, experienced high rates of deforestation. Second, we find the introduction of PESA elections leads to a greater reduction in deforestation for PESA villages close to mines. Third, we present evidence from the Indian state of Jharkhand that these changes are unlikely to be driven by elected officials and administrators’ efforts to block mining licenses through official channels. Rather, qualitative evidence suggests that the primary channel of change is through organized protests against large-scale industrial operations. This is further supported by the result that treatment effects are largest in areas with the highest ex-ante concentration of mines.

This paper makes theoretical, empirical and policy contributions. Theoretically, we argue that decentralization policies are rarely accompanied by institutions that truly create space for marginalized voices, one reason for the mixed results in the study of how local control affects natural resources. We make the case for scholars to examine mandated representation – an institution in over 100 countries – and an institution that can significantly bolster the power of marginalized communities. Additionally, we argue that vesting power in what we call ‘umbrella institutions,’ such as, inclusive multi-purpose village councils, rather than more targeted community resource management institutions, can better address the dual policy challenges of forest management and development, in tandem. To make this case we place this paper’s findings in conversation with recent research that examines the same policies, but focuses instead on economic outcomes. Gulzar, Haas, and Pasquale (2020) find that the improvement in representation for ST, in the same context, led to (1) large increases in the economic welfare for ST as measured by the performance of the world’s largest workfare program, (2) improvement in local road connectivity, and (3) general improvements in the provision of public goods.
Empirically, we pair a longitudinal, causal quasi-experimental research design with new high-resolution data on deforestation and forest stock. Most existing research studying policies on environmental outcomes relies on either cross-sectional variation or before-after comparisons, both of which struggle to credibly identify causal effects. By leveraging a unique policy and its roll out, we provide credible evidence of how improved political representation for marginalized communities reduced natural resource extraction. In doing so, we contribute to a small but emerging literature that pairs environmental data sets with causal research designs to study the effects of public policy on environmental outcomes (Ferraro and Simorangkir 2020; Baragwanath and Bayi 2020; Sanford 2021).

From a policy perspective, the paper presents evidence that conservation and the social protection of marginalized populations need not be substitutes, an argument advanced in recent research (Ribot 2004). Our evidence from rural India suggests that the two policy objectives may indeed be complementary, and potentially addressed by the same institution. In this sense we advocate greater attention be paid to umbrella political institutions that include in their design concerns of both development and conservation.

2 Representation and Resource Conservation

Ostrom (1990) famously argued that common pool resources could be governed effectively by local communities, rather than central governments or private companies. Since, researchers have examined various ways in which common pool resources can be most effectively governed and managed at the local level, paying particular attention to particular design principles under which community-based conservation can be bolstered to circumvent the tragedy of the commons (Cox, Arnold, and Tomás 2010). A key message from these studies is that local control of common pool resources can work through the internalization of social norms towards sustainable use (Sethi and Somanathan 1996; Dasgupta 1995; Agrawal and Gibson 1999; Dietz, Ostrom, and Stern 2003; Lemos and Agrawal 2006). The focus of these studies is on local mechanisms for resolving collective action problems. For instance, a recent collection of randomized experiments show how citizen monitoring – one of the
principles highlighted by Ostrom – can improve the management of common pool resources (Slough et al. 2021; Anderson et al. 2019).

2.1 Local Government and Forest Conservation

In focusing on conditions conducive to collective action, this literature on community-based conservation has paid less attention to the formal *institutional* prerequisites that ensure that marginalized individuals have adequate power to mobilize around their interests. Aware of this gap, recent work has begun examining the institutional dynamics of common pool resource management around the world (for reviews see Ribot (2004) and Larson and Soto (2008)). We argue that local formally elected government with mandated representation for marginalized communities are a set of institutions that theoretically and practically possess the key characteristics for effective management of forests.

Which institutional features might be conducive to forest conservation? Theories of common pool resource management have examined institutions set up by means of democratic decentralization. Unlike administrative decentralization, democratic decentralization “refers to representative and downwardly accountable local actors who have autonomous, discretionary decision-making spheres, with the power and resources to make significant decisions pertaining to local people's lives” (Larson and Soto 2008)[p. 216]. While the idea of democratic decentralization has seemed quite promising, researchers examining the effects of various institutional protections to local, indigenous communities, on deforestation outcomes, have found positive, negative, and null effects.\(^2\)

\(^2\)For examples of positive effects see Baragwanath and Bayi (2020), Nolte et al. (2013), Nepstad et al. (2006), Robinson, Holland, and Naughton-Treves (2014), Bonilla-Mejía and Higuera-Mendieta (2019), Blackman et al. (2017), and Agrawal, Wollenberg, and Persha (2014); for negative see: Robinson, Holland, and Naughton-Treves (2014); and for null see: Buntaine, Hamilton, and Millones (2015), BenYishay et al. (2017), and Slough et al. (2021).
2.2 The Role of Mandated Representation

We suggest that the mixed effects of democratic decentralization in the literature may be driven by institutional arrangements that provide authority to local decision makers, but do not make adequate arrangements to truly boost the voice of marginalized communities in resource management. This sentiment is echoed in reviews of the literature that question if democratic decentralization sufficiently challenged status-quo power relationships it was designed to disrupt (Agarwal 2001). For instance, synthesizing evidence and theoretical insights from a large number of case studies, Ribot (2004, p. 1) argues that democratic decentralization will only improve natural resource management under the following conditions:

\[
\text{IF institutional arrangements include local authorities who represent and are accountable to the local population and who hold discretionary powers over public resources, \text{THEN} the decisions they make will lead to more efficient and equitable outcomes than if central authorities made those decisions.}
\]

In practice, however, these conditions are rarely met, and there are reasons to believe that democratic decentralization that gives authority to local elites likely exacerbates the problem (Bardhan and Mookherjee 2000).\(^3\) Larson and Soto (2008) [p. 215] ask: if democratic decentralization “is not aimed at transforming the underlying structures of marginalization and inequity, what kind of democracy is democratic decentralization promoting?”

Our first theoretical contribution to this literature is to propose that mandated political representation for marginalized populations is a potential institutional mechanism that can yield improvements in conservation efforts because it can ensure that marginal people have adequate power to mobilize around their interests. Why is mandated representation a promising institutional mechanism? Fox

\(^3\)Ribot (2004) [p. 23] writes: “Even perfectly representative and downwardly accountable local authorities may over-exploit resources and ignore minority interests if given the unbridled power to do so. Decentralization is not a stand-alone panacea for natural resource management – or for the management of any public resource. When it is profitable, collective decision makers are likely to exploit natural resources rather than conserve them, especially if they do not bear the indirect costs.”
(2015)[p. 346] writes that “institutional change strategies that promote both “voice” and “teeth”” are the ones that are most likely to succeed. Assuming that ‘teeth’ are already provided through specific local government reforms (which is indeed the case in our context as we describe below), our focus here is on how mandated representation can resolve impediments to the successful channeling of ‘voice’. Quotas that reserve electoral positions for marginalized populations resolve accountability impediments to the successful implementation of democratic decentralization. Ribot (2004, Appendix C, p. 109), presents a list of accountability mechanisms that emerge from the literature, including independent third party monitoring and transparency. A missing mechanism in the literature are institutional reforms that create space for marginalized populations in local governments. Mandated representation achieves this by giving formal, downwardly accountable voice, to members of marginalized communities in local elected bodies.

However, improved representation is only likely to work when local communities’ interests are aligned with the resource conservation. Scholars argue that “empowering pro-climate constituencies across countries” holds great promise in solving problems related to climate change (Aklin and Mildenberger 2020, p. 6). The literature calls these forces ‘demand from below’ (Conyers 1983; Agrawal and Ostrom 2001; Larson and Soto 2008) and theorizes that they are key components of a successful local institution. In this sense, mandated representation can provide the key ‘mediating factor’ (Ribot 2004, p. 23) that bolsters democratic decentralization – an institutional vehicle that effectively delivers the voices of marginalized populations to accountable local authorities.

2.3 Representation as an ‘Umbrella Institution’

While the social welfare and economic development of marginalized communities and conservation of forests were often thought of as two policy objectives in tension, recent work has challenged this notion. Scholars argue that the conservation of natural resources, and securing the economic welfare of marginalized populations, may in fact be complementary policy objectives (Ribot 2003; Ribot 2004; Ribot, Chhatre, and Lankina 2008; Manor 2004).

Policymakers and scholars both tend to propose piecemeal institutional solutions for each policy
objective. There are two potential problems with this approach. First, an institution designed to improve only conservation (or only development) may have deleterious effects on the other policy objective. Second, setting up separate institutions for each policy objective may create a negative feedback loop, whereby institution from one body inhibits the work of the other. For example, many studies examine the impact of forest user groups on forest conservation. Recent critiques of this work suggest that designated forest user groups may undermine the authority of formal representative institutions, and in so doing, fragment public authority (Larson and Soto 2008; Manor 2004; Becker 2001; Toni 2006).

A second theoretical contribution of this study is to suggest that vesting powers in a single umbrella institution – for instance, a political institution that empowers marginalized voices – has the potential to overcome these problems. First, a single institution will be better at recognizing how to balance the dual policy objectives of development and conservation. Second, a single institution can consolidate power into a more substantive and meaningful democratic authority. When these conditions are met, balancing objectives and consolidated power, we may expect improvements in both environmental conservation as well other state services. Since umbrella institutions – in our case, elected village councils with a multi-faceted policy mandate – already exist in over 100 countries, we argue that there is great promise in their efficacy in promoting joint policy objectives.

3 Context: Identity, Representation, and Forests in India

3.1 Scheduled Tribes and Scheduled Areas

India’s Scheduled Tribes (ST) refer to individuals that fall under legal category that groups individuals frequently referred to, in India, as ‘tribals,’ or adivasi – which is often translated to ‘original inhabitants.’ The ST category was built upon the British authorities earlier lists of ‘Aboriginal Tribes’ and ‘Semi-Hinduised Aboriginal Tribes’ in the Census of 1872 (Corbridge 2002, p. 64) and introduced
special institutions based on this census with the Scheduled Districts Act of 1874. Following Independence in 1947, the new Indian state identified in the Fifth Schedule of the Constitution its own ‘Scheduled Areas,’ with few differences from the British Scheduled Districts Act. The government justified Scheduled Areas specifically as a means to improve representation and welfare for ST. Despite this rationale, ST continue to experience India’s highest rates of poverty and child mortality (Bank 2011). To explain these patterns, researchers point to government and industrial-led forced displacement of ST and their concentration in rural areas (Guha 2000; Sundar 2007; Bank 2011).

The geographic boundaries of areas the Scheduled Areas have changed relatively little over time. Today, Fifth Scheduled Areas cover parts of nine Indian states – Andhra Pradesh, Chhattisgarh, Gujarat, Himachal Pradesh, Jharkhand, Maharashtra, Madhya Pradesh, Odisha, and Rajasthan. Figure 1 presents our coding of the geographic extent of Scheduled Areas within these states. Scheduled Areas represent 41% of the territory within these states and per the 2011 Indian Census, ST total 104 million persons, or 8.6% of India’s population.

3.2 ST and Forests in India

Consider this excerpt, written by an *adivasi* rights activist, describing ST in Jharkhand (Barla 2021):

> Jharkhand is a tribal state. The tribal community of Jharkhand has a special history of clearing the forests and bushes, then setting up villages, protecting the forest and land while also fighting dangerous wild animals like snakes, scorpions, tigers, bears and lions. The tribal community’s history, language, identity, socio-cultural and economic values rest upon this heritage. History is witness that the struggle against the plundering of the natural heritage of the tribal community has been going on since the 1700s–1800s. There is an unbroken chain of heroes of the Jharkhand tribal community from 1855 to the early 1900s, such as Sidhu-Kanhu, Chand, Bhairav, Phoolo-Jhano, Sindhraya, Birain, Veer Budu Bhagat, Telang Khadiya, Kanu Mundu, Donka Munda, Birsa Munda and Jatara Tana Bhagat, who fought against exploiters, including the British.

> After India’s Independence, in the name of development, the natural resources of Jharkhand started being exploited indiscriminately. The indigenous farming communities of the state have

4In Appendix A.1 we provide further details on how and why the British codified ST.

5See Appendix A.2 for further details.

6Per authors’ calculations based on the original dataset described below.
been uprooted from their forests, land, villages and homes in the name of development. Their history and identities have been erased. Even after the formation of the Jharkhand state in 2000, the forcible eviction of the tribal community from their villages has been increasing rapidly ... The tribal society has been continuously agitating against the poison of displacement.

Local ST communities have repeatedly resisted the state - first the British, subsequently the Indian state, and in most recent period corporate interests - each of which have threatened their access to, and ability to enjoy economic opportunities from, their local lands and forest areas.\(^7\)

Assessing the relationship between ST – a collection of hundreds of identity-based communities with contested and hazy boundaries – and the forest, across a region as large as India, necessarily involves generalization which will not be true in all cases. That said, scholars and activists agree that ST individuals have, on average, access to fewer economic resources, less political power, and are more concentrated in rural, forested areas, in comparison to non-ST individuals. ST have been forcibly evicted from forests and lost their rights to collect for sustenance, as well as to sell, non-timber forest products (Vasan 2009, p. 127; Shah 2013, pp. 431, 436).

Other scholars have resisted conceptualizing ST as uniformly poor and rural. Sanjay Kumar has criticized describing ST as an “undifferentiated communities of forest users,” and the use the terms “poor,” “forest dependent community” or “tribal” interchangeably. Rather, Kumar (2002, pp. 763–766) shows that the interests of ST village elites in Jharkhand in commercial timber stand in tension with poor ST ability to collect non-time forest products. Sundar (2009, p. 18) has pushed back on the idea of ST as a homogeneous entity, describing the emergence of a middle class, developed in part by educational reservations and the army.

Even so, the idea that ST are forest dwellers, dependent upon the forest is sufficiently widespread

\(^7\)We go into greater history and detail regarding these patterns in Appendix A.3 and detail the case of Jharkhand in Appendix A.4.
that it both informs national, and international discourse8 and the drafting of critical national laws.9

Consider the most significant piece of legislation on forest policy in India – which modified the long-standing Indian Forest Act of 1927 – is entitled \textit{The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act} of 2006.10 This Act, often referred to as the Forest Rights Act (FRA), acknowledges in its preamble the “historical injustices” suffered by the tribals.11

To summarize – at a minimum, many ST communities, who live in and around forests, (a) rely on forests for at least some of their economic needs, (b) are significantly disrupted and at times forcibly evicted by industrial projects that clear those forests, and (c) stand to benefit from greater discretionary control over the use of local forests.

\textbf{3.3 Mandated Representation for ST}

Since Independence, the Indian government has instituted a variety of political quotas that reserve positions among elected officials, within political parties, in civil service, and for higher education, for individuals associated with specific identity groups. The Constitution of India provides multiple forms of mandated representation for individuals from the categories of Scheduled Tribes (ST), Scheduled Castes (SC), Other Backward Classes (OBC), as well as for women. Quotas set aside politicians within

8In response to a Supreme Court ruling, the UN Special Rapporteur on the Rights of Indigenous Peoples described ST as follows: “For generations, India’s tribal peoples have lived in harmony with the country’s wildlife, protecting and managing vital natural resources. It is because of their sustainable stewardship that India still has forests worth conserving” (2019).

9Sundar has argued that many such laws are drafted with a homogeneous \textit{adivasi} (ST) community in mind (Sundar 2009, p. 24).

10In Appendix A.3 we provide more details on the British Colonial Forest Acts, and their replication under the early Indian state.

11By contrast, the Indian Forest Department opposed the Act - on grounds that it would lead to the destruction of forest cover and wildlife (Bhullar 2008).
the national parliament (lok sabha), state legislatures (vidhan sabha), and from 1993, in the PRI at district, block and village-cluster levels.

The Government of India, by means of the 73rd Amendment to the Constitution, 1992, focused and standardized local governance on the three-tier system of Panchayat Raj institutions (or PRI), with locally elected government councils at the district, block, and village-cluster levels. These councils are responsible for welfare schemes, infrastructure, and many other regional development policies. In addition, the 73rd amendment devolved powers pertaining to a wide array of economic development and social justice issues to these councils – including, minor forest produce (Singh 1994).

The 73rd Amendment, and corresponding quotas, were not implemented in Scheduled Areas when they were rolled out across the country in 1993. To address this gap, The Panchayats (Extension to Scheduled Areas) Act, 1996 (PESA) extended local government institutions and created system of political quotas. This mandated representation dramatically boosted ST political representation with Scheduled Areas as the key reference. While elsewhere in India local government quotas only applied to a fraction of areas on a rotating basis, PESA mandated that all chairperson positions at the three levels of local government, and at least 50% of all seats on these councils, be reserved for ST candidates, on a permanent, non-rotating basis. Hence, when local elections were next held these reforms gave ST a tremendous positive shock to their local political representation.

While legislation setting environmental laws is passed at the federal level, such laws frequently empower local bodies. PESA aimed to ‘decentralise existing approaches to forest governance by bringing the gram sabha (village council) center stage and recognized the traditional rights of ST over “community resources”’ - meaning land, water, and forests’ (Patnaik 2007, p 5). For example, PESA tasked the gram sabha with both preventing alienation of ST land as well as approving industrial works in Scheduled Areas (e.g. mining licenses). As with many governmental schemes and institutions in India, proper implementation and enforcement of rights-based legislation varies tremendously.
3.4 Why ST Representation May Shape Forest Outcomes

Why might PESA, and ST representation more broadly, matter for forest outcomes? First, improved representation would allow ST to secure better access to non-timber forest products, historically an important source of income for ST, leading to overall better stewardship of forests. By contrast, where ST have less power, worse access to the forest, and where commercial logging interests are unimpeded, we would expect more deforestation and lower stock of trees.

Second, given a history of ST displacement from and loss of use of forest resources, ST representation could lead local actors to block government or industrial operators from pursuing projects that clear forest lands. In this way ST representation could lead to official, legal channels blocking such operations, or popular, protest channels opposing large scale works. After presenting the main results below, we discuss and present evidence for these channels of change in Section 8.

4 Data

4.1 Measuring Scheduled Areas

We manually coded whether a village belongs to Scheduled Area, or not, using information from the Government of India’s Ministry of Tribal Affairs website. Each state releases official documents that list specific village names as Scheduled, or the names of blocks and/or districts for those cases where all villages in a block or district are Scheduled.

To remain consistent in our coding strategy across states and avoid human error, we code an entire block as Scheduled if any village was designated as Scheduled within the block. Empirically, this approach is conservative because, while it accurately codes Scheduled Areas when all villages in a district and block are inside the treatment area, it codes some untreated villages within a block as treated – that is, the resulting bias will be towards zero. This coding is illustrated spatially in Figure 1 and a validation exercise that compares this coding with government issued maps is presented in Gulzar, Haas, and Pasquale (2020), Appendix B.
Figure 1: Scheduled Areas in States Covered by the Fifth Schedule of the Indian Constitution
Once each village is coded as Scheduled or not according to the above procedure, we construct a switching indicator for Scheduled Areas, in each state, based on the occurrence of the first panchayat election in Scheduled Areas in accordance with PESA. We illustrate this timing in Figure 2.

4.2 Forest Data

We use two sources of highly spatially disaggregated remote sensing data to measure forest cover and deforestation. The MEaSUREs Vegetation Continuous Fields (henceforth VCF) dataset (Song et al. 2018) reports annual indices of tree-canopy cover (henceforth, forest index), non-tree vegetation, and bare ground at the 1/5 degree resolution (≈ 22 sq km ≈ 13 sq miles at the equator) from 1982-2016.

The second dataset comes from the Global Forest Cover (henceforth GFC) dataset (Hansen et al. 2013), which reports the ex-ante tree canopy as a share of the cell and the year in which any given cell was deforested (defined as a stand-replacement disturbance, that is, a disturbance that eliminates all trees in the pixel) between 2001 and 2017. For GFC, we aggregate these measures up to the village level by merging them with village shapefiles for the 2001 Indian census (Infomap 2001), which is the smallest administrative unit that has consistent coverage across Indian states. We then convert the number of deforested cells per village per year into hectares per year—a commonly used unit when discussing medium-scale areas—by multiplying the number of deforested cells in each year by 0.09, since a hectare is 10,000 m² and the area of a LANDSAT cell is 30 × 30 = 900 m². This gives us the GFC dependent variable in terms of deforested area in hectares in each year for each village.

The two data sources have their strengths and weaknesses. The VCF data has longer temporal coverage, which allows us to use variation in treatment status from all nine Fifth Schedule states, while GFC coverage begins in 2001 and thus restricts us to using variation from the last four states to implement PESA reforms. VCF reports three continuous indices that add up to add up to 100 for each pixel, and as such can be used to study both increases and decreases in forest cover and substitution patterns across the three land cover categories. By contrast, a pixel can only move from forested to deforested once since deforestation is an absorbing state in the GFC data. The GFC data is more geographically precise, while the VCF data necessitates a pixel unit of measurement (with each pixel
larger than village).

We report aggregate trends in average tree canopy from VCF and annual deforested area from GFC in Figure 3. The first panel indicates that the average tree canopy index has been weakly increasing over the entire span of the VCF dataset, which is consistent with earlier findings (Foster and Rosenzweig 2003). The second panel shows that substantial deforestation between 2000 and 2015.

Figure 2: PESA Implementation Timing

Notes: Darker shades indicate years with PESA implementation. PESA was implemented only in Scheduled Areas within each of these states.

Finally, the use of remote-sensing data for social scientific research questions requires some care in design and interpretation. The two forest cover measures we use are model-based predictions, and as such may be subject to measurement and prediction error. For example, satellites may produce systematically worse measures of forest cover in cloudy places. With our longitudinal analysis, these issues are less relevant because pixel and village fixed-effects partial out this variation so long as the measures have been harmonized, which has been the case with these datasets (Song et al. 2018; Hansen et al. 2013). We discuss these measurement error issues in greater detail in Appendix B.
Figure 3: Aggregate trends in Forest Cover Index in VCF data (top) and Total Deforested Area in GFC (bottom) in the 9 states under study.
5 Empirical Strategy

We employ a difference-in-differences design to study the effect of the roll out of PESA on deforestation, where the first difference is between Scheduled Areas and non-Scheduled Areas, and the second is over-time variation following the onset of the first post-PESA election in Scheduled Areas. In Scheduled Areas, political representation for ST increases by means of both the introduction of local elections \textit{(after PESA)} and via mandated representation throughout the entire geographic area.

Non-Scheduled Areas experienced local government since the introduction of the 73rd amendment.12 In addition, some villages in these areas are reserved for candidates who identify as ST, SC, OBC, and/or as women based on the proportion of the group’s population in the local area, a reservation that rotates over election cycles. Critically, the rotating quotas, only reserve a given area until the next five-year election, unlike in Scheduled Areas, where the quota persists indefinitely. Finally, elections are held in both Scheduled and non-Scheduled areas at the same time. Because elections can only be held after an appropriate period has passed (that is, when the term of the local governments in the non-Scheduled Areas is complete), the specific year in which treatment begins is unlikely to be correlated with the conditions in Scheduled Areas. Therefore, what we estimate using a difference-in-differences design can be interpreted as the differential effect of increased representation for ST.

Since we have a panel dataset of each unit – pixel for VCF data and village for GFC data – with time-varying binary treatment, we begin the analysis with a two-way fixed-effects estimator.

\begin{equation}
Y_{ist} = \tau \text{Scheduled Area}_{ist} \times \text{PESA Election Year}_{ist} + \delta_i + \gamma_t + \epsilon_{ist}
\end{equation}

where i indexes pixels/villages, s indexes state, and t indexes years. Y_{ist} is the forest index for pixel i in year t or total area (in Hectares) deforested in village i in year t (in GFC), \text{Scheduled Area} \times \text{PESA Election Year}_{ist} is a dummy that takes a value of 1 for pixels/villages in scheduled areas in the year the first election where PESA was implemented, δ_i is a pixel/village fixed effect, and γ_t is a year

12Except in the case of Jharkhand, which we discuss below.
fixed-effect. \(\tau \) corresponds with the effect of the introduction of PESA elections in Scheduled Areas. This estimator includes pixel/village which account for account for all time invariant pixel/village characteristics, such as geographical variables like remoteness, or slow-moving socio-demographic ones such as ethnic composition. We also include year fixed effects that absorb common shocks like national policies, such as the Forest Rights Act, or a national decline in economic activity following a recession, that might affect deforestation rates. We cluster standard errors by block though the official ‘unit of assignment’ of PESA status is the village to allow for spatial spillovers.

The difference-in-differences design relies on the assumption of parallel trends, which in this context means that pixels/villages in Scheduled Areas were on the same deforestation trajectories from those that were not in Scheduled Areas before the introduction of local elections under PESA. First, one might reasonably worry simple pixel/village fixed effect may not capture potential time-varying confounding. To account for this, we also introduce pixel/village level linear time trends. These trends remove variation from the outcome by pixel/village that may potentially mis-attribute treatment effects to the policy if take-up was indeed non-random and related to the underlying village time trend of forest outcomes.

A second worry is that different state-level policies adopted at particular times may constitute a plausible time-varying confounder, rendering the estimate from the common year-fixed-effects specification biased. For example, the Forest Rights Act (passed in 2006, implemented in 2008), which delegated various forest-related rights to the village panchayats regardless of their PESA status may have been implemented unevenly across different states, and therefore a common year-fixed-effect might not account for this confounding. We therefore introduce, state \(\times \) year fixed-effects, which account for time-varying state-level confounders, such as the FRA. To account for these twin concerns about time-varying confounding, we use the following specification:

\[
Y_{ist} = \tau \text{Scheduled Area} \times \text{PESA Election Year}_{ist} + \delta_i + \xi_{st} + \delta_i t + \epsilon_{ist} \tag{5.2}
\]

where we have added additional \(\delta_i t \) village-specific linear time trends and \(\xi_{st} \) state-year fixed effects. In this specification, \(\tau \) is identified off within-village variation, conditional on common state
× year level unobservable variables and village-level time trends for the entire sample. This analysis, therefore, pools across differences-in-differences estimates (wherein the treatment and control units are within each state), and does not rely on the staggered adoption of the policy for causal identification. This specification yields estimates of the average treatment effect on the treated (ATT) even when treatment effects are heterogeneous, which the standard two-way FE model does not (Imai, Kim, and Wang 2021). This is, to our mind, the most credible comparison wherein parallel trends are likely to hold.

6 Results

Our main empirical results for the two datasets are reported in Table 1 below. The first three columns report the results on a pixel-level panel VCF dataset where the outcome is the annual forest-index and the treatment is coded on the basis of PESA rollout; hence, positive coefficients denote an increase in forest cover. The next three columns report the estimates from the analysis on a village-level panel GFC dataset where the outcome is the annual deforested area in hectares; hence, negative coefficients denote a decrease in deforestation. Columns 1 and 4 reports estimates of τ from estimating equation 5.1, column 2 and 5 adds in state-year FEs, and finally column 3 and 6 reports results from estimating our preferred specification (equation 5.2).13

Since including villages with no forest cover mechanically biases estimates towards zero (villages with no forest cover cannot have decreases in the rate of deforestation), we restrict the analysis to areas with some existing forest cover. For both VCF pixels and GFC villages we restrict attention to places with ex-ante coverage of 2% in 1990 and 2000 respectively. This is the 50th percentile of coverage in VCF and 75th percentile in GFC. We show robustness to varying these thresholds below.

13The state-year FEs restrict identifying-variation to within-state difference-in-differences for four states (Chhatisgarh, Jharkhand, Odisha, and Maharashtra) that have variation in PESA implementation in our sample, which is why the number of observations falls from approximately 57,000 villages in column 4 to approx 34,000 villages in columns 5 and 6.
Table 1: The Impact of Increased Representation on Forest Cover and Deforestation

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Forest Cover Index (0-100)</td>
<td>Annual Deforestation (in Hectares)</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(4)</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>(5)</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>(6)</td>
</tr>
<tr>
<td>PESA × Scheduled</td>
<td>0.1199 (0.0737)</td>
<td>-0.0864 (0.0196)</td>
</tr>
<tr>
<td></td>
<td>0.1499 (0.0648)</td>
<td>-0.0200 (0.0181)</td>
</tr>
<tr>
<td></td>
<td>0.3624 (0.1136)</td>
<td>-0.0683 (0.0313)</td>
</tr>
<tr>
<td>Dep Var Mean</td>
<td>8.809</td>
<td>0.0800</td>
</tr>
<tr>
<td>Pixel</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Year</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>State × Year</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Village</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Fixed-effects

Linear Time Trends

× Pixel ✓
× Village ✓

Fit statistics

# Years	22	–	–	17	–	–
# State × Year	–	198	198	–	68	68
# Pixel	30,843	30,843	30,843	–	–	–
# Village	–	–	–	57,476	33,989	33,989
Observations	678,546	678,546	678,546	977,143	577,813	577,813

Notes: Standard errors are clustered at the block level and reported in parentheses. Dep Var Mean refers to the mean outcome for non-Scheduled Areas before PESA implementation.
6.1 Main Effects

We find that PESA increased forest cover and decreased the rate of deforestation, with all estimates significant at the 1% level. For the VCF data, our preferred specification in column 3 produces a treatment effect of 0.36, which translates to a 5.5% increase on the control mean of 8.8 (on a 100 point scale). For the GFC data, the treatment effect is approximately 0.06 hectares, which is approximately 75% reduction relative to the overall mean of 0.19. The implied back-of-the-envelope effect is on the order of 1,440 hectares per year (see Appendix C for details.)

We find stronger results in areas with higher ex-ante forest cover. We test whether our results are sensitive to the choice of ex-ante forest cutoff by estimating regression 5.2 on a sample with varying ex-ante forest cover cutoffs. The results are presented in Figure 4. We find that estimates are stable across a wide variety of thresholds and are larger when the sample is restricted to pixels / villages with higher ex-ante forest cover.
Figure 4: Treatment Effects on Annual Deforestation as a Function of Ex-Ante Forest Cover Cutoffs

VCF

GFC

Notes: The figure reports treatment effect estimates with specification 5.2, with standard errors estimates clustered by block. Ex-ante cut-offs are defined with 1990 data for VCF and with 2000 data for GFC.
6.2 Event study: Impacts Appear After the Introduction of PESA.

To examine whether PESA is indeed driving these results, we report yearly treatment effects separately for each year. Intuitively, if parallel trends hold, effects of treatment leads should be relatively insignificant and moderate in size, while the contemporaneous and lagged effects ought to be large. To do this, we estimate a specification that includes leads and lags of the treatment dummy to decompose the treatment effect by each year preceding and following the switch from pre- to post-PESA. We take the year immediately preceding the treatment as the omitted baseline year of comparison to avoid saturating the model. We use the VCF data alone for this section, since the GFC dataset (2001-2017) coverage period does not give us sufficient time-periods to estimate effects on leads of treatments, or match on a reasonable number of pre-treatment outcomes.

We present the results graphically in Figure 5 for different sub-samples of the data, in increasing order of ex-ante forest levels, with the bottom left (6th decile and up) panel corresponding to the main analysis sample in the previous section. \(t = 0 \) represents the first year of the treated period, while \(t = -1 \) represents the last year of the control period. We observe some anticipation effects (based on the significant negative coefficient for \(-2\)), as can be expected from a publicly announced policy, but the bulk of effects are large and persistent following the treatment year. Finally, consistent with Figure 4, the treatment effects are larger when we restrict the sample to higher ex-ante forest cover.
Figure 5: Dynamic Treatment Effects of PESA Adoption on Forest Index

Notes: This figure presents result from the event study regression omitting time -1, such that each coefficient reports the difference with respect to the year immediately preceding treatment. Standard errors are clustered by block. Deciles are defined with 1990 values.
To further account for potential differences in pre-trends across the two groups, we perform a matched difference-in-differences analysis wherein we exact-match on state and ex-ante forest cover decile and coarse match on the trajectory of the outcome variable (forest index for VCF and deforested area for GFC) for the units in our sample, as suggested by Imai, Kim, and Wang (2021). This allows us to estimate treatment effects on the matched sample which we report in Figure 6. This analysis restricts the sample to treatment and control villages that are in the same state, have comparable amounts of ex-ante forest cover in 2000, and have a similar rate of deforestation for four years prior to PESA implementation (which mechanically rules out differential pre-trending by sub-setting to the best match to treatment villages). We report a balance-test for pre-treatment deforestation in Figure A1 and conclude that the matched samples are well-balanced (with the comparison in SD motivated by Imbens and Rubin (2015), who argue that standardised balance tests are advisable over comparisons in raw measures).

In summary, after adjusting for pre-trends using panel-matching, we find that the treatment effect appears in the election year, persists for a few years, and is consistently large and positive for VCF (indicating increase in forest cover) and negative for GFC (indicating a decrease in deforested area). This provides stronger evidence to justify a causal interpretation of the observed decline in deforestation rate following the introduction of PESA. These estimates are also substantially larger than those produced by the regression event-study estimates in Figure 5, suggesting that if anything, omitted time-varying confounders are biasing our regression estimates towards zero.
Notes: This figure reports results from a matched sample. We used exact matching on state and ex-ante forest decile and coarse matched on deforestation (outcome) on the four preceding periods to PESA implementation. Matching is performed using PanelMatch (Imai, Kim, and Wang 2021). Standard errors are cluster-bootstrapped by block.

7 The Role of Mandated Representation

Improved representation in our context comprises two elements: local government and ST mandated representation. Theoretically, we have argued that mandated representation may be particularly powerful at overcoming roadblocks in increasing the efficacy of local government on forest conservation. In this section, we probe this claim by juxtaposing the impact of PESA, presented above, with two other laws that contain policy objectives, but lack a key feature of PESA – mandated representation in local government.

7.1 Panchayati Raj Institutions

The PRI Act introduced a three-tier system of formal local government in non-Scheduled Areas of India, beginning in 1993, and with rotating, rather than fixed, quotas. We use the staggered roll-out of local government under this reform to study its impact on the forests cover index in the VCF data
We utilize a similar empirical strategy as in our main results, except that Scheduled Areas serve as control units (since they did not receive local governance institutions until PESA implementation much later), while non-Scheduled Areas in each state are the treatment units. In contrast to the positive effects of the introduction of PESA, we find that the introduction of local governments under the 73rd Amendment in non-Scheduled Areas had, if anything, a small negative effect on forest cover. This finding may reflect elite capture, as described in our theoretical discussion in footnote 3 and consistent with Bardhan and Mookherjee (2000).

One concern with this test is that non-Scheduled Areas had limited forest cover to begin with. On one hand, this would limit the degree to which PRI institutions could shape forest outcomes. On the other hand, this could make it easier for PRI institutions to affect real change. To probe this, we plot the difference in differences coefficient by ex-ante forest cover in Panel A of Figure 7 and do not find any evidence that PRI institutions had an impact on forest cover – even in high ex-ante forest coverage areas.

We also leverage the state of Jharkhand, which due to its unique history, allows us to isolate the role of ST mandated representation on deforestation. Due to legal battles regarding the independence of the state of Jharkhand – before 2000, Jharkhand was a part of Bihar – Jharkhand held its first local elections for both Scheduled and non-Scheduled Areas together in 2010. For this reason, Jharkhand’s first post-PESA election in 2010 introduced local elections effectively to the entire state, and ST quotas only in Scheduled Areas. The treatment effects we observe because local government via local elections arrives in both Scheduled and non-Scheduled Areas at the same time. Consequently, any treatment effects we observe in this state are more likely attributable to ST mandated representation. Indeed, we find strong reductions in deforestation in Jharkhand (see Appendix E.2), where the average forest cover does not change. These results emphasize how mandated representation may be a key channel for fulfilling the historical absence of political voice for ST in rural India.

\footnote{Note that the GFC's temporal range does not go back far enough to be used for this test.}
7.2 The Forest Rights Act

Roughly concurrent with the rolling implementation of PESA, The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act – also known as the Forest Rights Act (FRA) – was passed in 2006 and implemented on January 1, 2008. FRA aims to provide rights to forest inhabitants, and ST in particular, including ownership rights, rights of use, rights to relief in cases of eviction or displacement, and rights to protect forests and wildlife. Kashwan (2017) discusses in detail the history of FRA’s adoption, and writes that: “In the end, the FRA and its accompanying rules turned out to be a hodgepodge of conflicting interests and perspectives.” In practice FRA has, at best, a mixed and incomplete record of granting land and protecting the interests of ST and other marginalized communities rights to the forest (Kumar, Singh, and Rao 2017).

Was the FRA disproportionately effective in Scheduled Areas? In comparing Scheduled to non-Scheduled Areas, we find little difference in deforestation following the FRA implementation in 2008.15 We therefore conclude that PESA had a substantial effect on reducing deforestation in Scheduled Areas relative to the FRA. As in the analysis of PRI above, we similarly find no evidence of greater FRA impact on deforestation in areas with significant ex-ante forest cover (see Panel B of Figure 7).16

15We conduct this test by regressing forest cover on Scheduled × post-2007 dummy, which estimates the heterogeneous effect of FRA in Scheduled Areas.

16We see the same patterns in the GFC data (see Appendix E.2).
Figure 7: The effect of Panchayati Raj Institutions and Forest Rights Act by ex-ante (1990) Forest Cover.

Panel A: Effects of Panchayati Raj Introduction on Forest Index (VCF data).

Panel B: Effects of Forest Rights Act on Forest Index (VCF data)

Our takeaway from these analyses is that neither local representation (via PRI), nor the legal provision of forests rights (via FRA), are sufficient. Unless there is a boost in ST communities’ political power, we are unlikely to see an impact on forest conservation. The case of PESA is unique in this sense – it provides an institutionally more inclusive solution to the problem of forest management.

8 Unpacking the Relationship Between Representation and Forest Outcomes

In this section we investigate the evidence for two mechanisms linking improved representation under PESA to forest conservation. First, we present evidence that ST representation leads to an improvement in the stewardship of the forest. Second, we present evidence that mandated representation increases ST resistance to commercial interests – and in particular, to mining operations – that threaten ST control and use of the forest.
8.1 Stewardship of the Forest

One channel by which mandated representation increases forest conservation relates to ST improving stewardship of the forest in order to pursue their economic interest by collecting minor forest produce. While in most parts of India deforestation has continued to grow due to timber extraction, mining, and other industrial projects, qualitative and historical accounts of tribal populations have emphasized their interest in preserving local forests. One clear economic logic, present in both the historical and anthropological accounts reviewed, above as well as in contemporary accounts in the post-PESA period, is that ST groups collect, use and sell non-timber forest products from the forest. By pursuing these non-timber resources, ST communities under PESA effective serve as better stewards of the forest in comparison to the status quo where timber companies and mining operators necessarily extract all tree cover in their areas of use. Consider the following examples of how ST groups under PESA secure access to forest lands, then cultivate minor forest product, and finally protect those forests:

• In the state of Odisha, activists and non-governmental organizations have documented how individual gram sabha, or local village councils, a key political unit empowered by PESA, have organized and prepared boundary maps reflective of their customary rights, under the FRA, in order to secure their rights to these lands.17

• In 2016, the Rahu group of villages, in the state of Maharashtra, was able to gain official community forest rights recognition for 1,300 hectares of forest land under PESA and FRA. This has allowed Rahu to collect and sell minor forest produce, consisting primarily of bamboo and tendu (which is used to make cigarettes), which in turn has created a sustained source of livelihood for these villagers, over the past four years. Further, the Rahu village gram sabha created a community forest rights management committee, which in turn generated and carried out a

conservation, management and harvesting plan for collecting of that minor forest produce and more broadly, managing their local forest areas. Lastly, the gram sabha organized regular forest patrols to protect against forest fires and illegal forest theft (Upadhyay and Pinto 2020).

Shifting to quantitative evidence, we see some support for this channel. First, our main empirical results show that mandated representation leads to both lower deforestation and an increase in the total forest stock. This is consistent with a substitution from timber extraction and other large scale industrial works to small-scale collection of minor forest produce. Second, we examine the VCF short vegetation index – a layer that measures vegetation that has not reached the tree height cutoff of five meters. We find that PESA leads to a decrease in the short vegetation index (see Appendix Figure A4). This decrease is consistent both with ST communities selective, and sustainable, collection of minor forest produce, as well as their allowing and protecting young trees to mature and grow above five meters. This latter logic explains both the decrease in short the vegetation index and overall increase in forest cover.

8.2 Opposing Commercial Interests

In 2011, according to Roy (2011):

Over the past five years or so, the governments of Chhattisgarh, Jharkhand, Odisha and West Bengal have signed hundreds of [Memoranda of Understanding (MoU)] with corporate houses, worth several billion dollars, all of them secret, for steel plants, sponge-iron factories, power plants, aluminium refineries, dams and mines. In order for the MoUs to translate into real money, tribal people must be moved.

Scholars have shown that mining operations have been associated with (a) villagers who live near mines exhibiting higher respiratory illness and worse employment outcomes (Saha et al. 2011), (b) decreased vegetation, worsening vegetation composition, increased deforestation and increased forest fragmentation (Areendran et al. 2013), and (c) mining-induced forced displacement. Downing (2002, p. 3) found that mining in India displaced 2.55 million individuals between 1950 and 1990.

One critical cause of deforestation involves the legal and illegal extraction of natural resources, whereby politicians and bureaucrats work hand-in-hand with corporate interests (Burgess et al. 2012).
While researchers have shown state actors and corporate interests regularly appropriate land without local government consultation, contemporary studies of rural India have similarly shown villagers - working through their locally elected, council chairpersons, attempt to contest mining projects, and other large development operations (Choudhury 2019).

As discussed above, Indian mining companies have worked with state actors to clear forests and exploit mineral resources, often leading to the displacement of ST and other rural inhabitants. If this mechanism is operative, the PESA treatment will disrupt existing political leader - corporate mining relations, much of it at the district or state level, empowering village governance, and better aligning the preferences of ST communities and their leaders with the conservation of forest resources.

We first use data from the Indian Mining Census, compiled by Asher and Novosad (2021) to examine these dynamics. The mining census lists every known mine’s location and type (see Figure A5), which allows us to compute the distance from every village to every mine. We then use the minimum of these distances as a mediator to examine if treatment effects are stronger for villages that are located close to mining sites.

Using VCF data, we find areas closest to mines experience worse deforestation before PESA (see Figure 8 Panel A). However, these are also the areas that experience the greatest positive outcomes vis-a-vis forest conservation after the arrival of PESA (see Panel B). We report additional estimates by tercile of distance to mines, as well as analogous calculations using GFC data in Appendix E.4. We find qualitatively similar results in the GFC data (Figure A6).

How specifically does giving greater political power to ST communities disrupt mining operations, and thereby reduce deforestation? One channel is popular protest – where increasingly empowered and better organized ST communities organize to protest and prevent new and existing mining operations. Consider two contemporary examples of protest against mining and industrial operations in Scheduled Areas empowered by PESA:

• In 2018, more than 100 ST, declaring themselves as members of the local gram sabha, disconnected water service and locked the pump house serving a cement plant in the town of Rajgangpur, in Odisha’s district of Sundargarh. These ST individuals demanded the plant op-
Figure 8: Deforestation and Proximity to Mining

Panel A: Pre-PESA Deforestation Rates by distance to mines

Panel B: Treatment effects on Annual Deforestation by Distance to Mines

Notes for Panel A: The figure reports non-parametric binned scatterplot of decrease in forest index between 1990 and the first year before PESA as a function of distance to mines.

Notes for Panel B: We report treatment effects from a binned regression that estimates the treatment effect in pixels at different values of the moderator (distance to mines).
erators pay a water tax and fine for taking the water previously, claiming that the plant owners failed to provide compensatory development works in the region (Service 2018).

- In the Hasdeo region of Chhattisgarh, villages in 2020 bound together to protest land acquisition for the Parsa coal block, which they claim was done without consent of gram sabha, as required by PESA. To that end nine sarpanch in the area – each representing a cluster of villages as a council chairperson, one of the specific positions reserved for ST under PESA – wrote a letter to Prime Minister Modi, citing both PESA and the FRA in their opposition to the auction of mining blocks (Alam 2020).

A second channel is that newly elected officials, in Scheduled Areas, are able to prevent mining operators from beginning operations, for instance by blocking their license. While we were not able to gather data on industrial or mining operators, at the micro level, for the whole of India, for this study – we were able to coded all mining licenses issued in the state of Jharkhand in the 2006-2013 period (see Appendix E.4 for details).

We find that the introduction of PESA had no impact on the number of licenses issued, nor the amount of forest area these licensees were permitted to clear. This evidence allows us to, at least in the case of Jharkhand, rule out the explanation that the reduction in deforestation close to mines was because village councils, in Scheduled Areas and under ST leadership, were able to use official channels to block mining licenses.

The more likely explanation, as supported by the qualitative literature above, is that PESA allowed the ST to raise informal pressure on mining activities through protests and blockages. To go one step further, we attempted to measure if PESA had a larger impact in areas where the ST were most affected by the deleterious impacts of mines. In areas with the highest concentrations of mines, we find the lowest levels of deforestation as a result of PESA (see Appendix E.4 for details).
9 Discussion and Conclusion

In this paper we show that local representation matters for natural resource conservation. We find that the introduction of local government elections, with mandated representation for ST, substantially reduces the rate of deforestation and increases the overall stock of forest, in India. We find suggestive evidence for two mechanisms. First, ST communities pursue their economic incentives to collect minor forest produce, reduce the influence of commercial interests, and in so doing serve as better stewards of their local forests. Second, we find that the reduction in deforestation is largest in areas closest to mines – areas that ex-ante had the highest levels of deforestation – suggesting that bolstering political representation may solve collective action problems and spur marginalized communities to protest and undermine the influence of large-scale commercial operations.

From a policy perspective, it is not clear if achieving improved forest outcomes would also fulfill welfare priorities for marginalized populations. ST remain one of the most marginalized and impoverished populations in India today. Therefore, policymakers have a duty to provide ST with better welfare opportunities. Recent literature suggests there may be policy complementarities between achieving conservation and local development for marginalized populations (Ribot 2003; Ribot, Chhatre, and Lankina 2008; Manor 2004; Larson and Soto 2008). In our case, consider the question of whether mandated representation for ST, by means of PESA, also improves ST economic well-being via access to government welfare programs. We make progress on this by placing our findings on forest conservation in conversation with recent evidence on the effects of the same policy on development and welfare outcomes.

Gulzar, Haas, and Pasquale (2020), examining the boost in ST representation via PESA, study the provision of economic opportunities to ST under the world’s largest employment program, the National Rural Employment Guarantee Scheme (NREGS). This program aims to guarantee 100 days of minimum wage labor to every rural Indian citizen, each year, as a way of providing social security to poor households. They find that ST mandated representation significantly increases how much work ST receive under NREGS, without compromising the implementation of NREGS for other, historically marginalized communities who are not ST. Beyond NREGS, they find other economic benefits, includ-
ing improvements to local public goods and rural road connectivity. Taken together, our findings on forests here and the results in Gulzar, Haas, and Pasquale (2020), present micro-level evidence for the complementarity of conservation objectives and economic welfare objectives from the same policy experiment.

While scholars have examined a variety of institutions that seek to tackle deforestation and these development concerns directly, our focus on mandated representation is an examination of an umbrella institution – one that aims to simultaneously improve the economic welfare of marginalized communities as well as give local populations more control over their local resources. Over 100 countries around the world have implemented mandated representation institutions with the aim bolstering the voice of marginalized communities. Given the ubiquity of these institutions, political representation as an umbrella approach appears to be well worth further analysis and policy consideration.

References

Toni, Fabiano (2006). “Institutional choices on the Brazilian agricultural frontier: Strengthening civil society or outsourcing centralized natural resource management”. *Survival of the Commons: Mount-

Online Appendix

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A More Contextual Discussion of ST, Forests, Resistance</td>
<td>2</td>
</tr>
<tr>
<td>A.1 The British Colonial Period and Scheduled Tribes</td>
<td>2</td>
</tr>
<tr>
<td>A.2 The Stability of Scheduled Areas since Independence</td>
<td>2</td>
</tr>
<tr>
<td>A.3 Forest Policy and ST Resistance</td>
<td>3</td>
</tr>
<tr>
<td>A.4 Context in Jharkhand</td>
<td>4</td>
</tr>
<tr>
<td>B Measurement Error Issues</td>
<td>5</td>
</tr>
<tr>
<td>C Discussion of Treatment Effect Size with GFC data</td>
<td>6</td>
</tr>
<tr>
<td>D Summary Statistics</td>
<td>7</td>
</tr>
<tr>
<td>D.1 VCF Data</td>
<td>7</td>
</tr>
<tr>
<td>D.2 GFC Data</td>
<td>7</td>
</tr>
<tr>
<td>E Additional Results</td>
<td>8</td>
</tr>
<tr>
<td>E.1 Panel-match diagnostics</td>
<td>8</td>
</tr>
<tr>
<td>E.2 Additional Results on The Role of Mandated Representation</td>
<td>9</td>
</tr>
<tr>
<td>E.3 Additional Results on Stewardship of the Forest</td>
<td>11</td>
</tr>
<tr>
<td>E.4 Additional Mining Results</td>
<td>12</td>
</tr>
<tr>
<td>F Software and Data used</td>
<td>18</td>
</tr>
</tbody>
</table>
A More Contextual Discussion of ST, Forests, Resistance

A.1 The British Colonial Period and Scheduled Tribes

The ST identity category was first codified, with corresponding separate administrative areas specified, during the British Colonial period. Scholars have identified these ‘tribal’ groups by (a) their descent from particular lineages (Sundar 2009), (b) pre-colonial systems of administration, and/or (c) well-defined land arrangements and rights (Gupta 2011). Despite regular mention of these factors, scholars agree that there has been little clear definition or criteria as to what, precisely, constitutes an Indian ‘tribe’ (Béteille 1974; Skaria 1997; Corbridge, Jewitt, and Kumar 2004; Corbridge 2002; Galanter 1984).

Encountering what are now labeled ST communities, British administrators defined and enumerated those they viewed as ‘tribal’ populations. British authorities first provided a list of ‘Aboriginal Tribes’ and ‘Semi-Hinduised Aboriginal Tribes’ in the Census of 1872 (Corbridge 2002, p. 64) and introduced special institutions based on this census with the Scheduled Districts Act of 1874. These communities were not distributed randomly, but geographically concentrated in areas distant from urban areas that were heavily forested and hilly.

A.2 The Stability of Scheduled Areas since Independence

The geographic boundaries of areas the Scheduled Areas have changed relatively little over time. Per the Constitution, the President of India has the right to Schedule or De-schedule Areas, in consultation with State Governors. In 1962, the Dhebar Commission proposed that an area should be eligible to become a Scheduled Area according to the following four (vague) criteria: (a) Preponderance of tribals in the population, (b) Compact and reasonable size, (c) Under-developed nature of the area, and (d) Marked disparity in economic standards of the people (Dhebar 1962). In practice there has been no exact formula for updating or adjusting notification of Scheduled Areas, and these Areas have
remained remarkably stable since the Dhebar Commission.18

A.3 Forest Policy and ST Resistance

ST have been disproportionately linked to forests and forest policy. The British set up an extractive institution of forestry management beginning in 1864 with the establishment of the Imperial Forest Department. The British forest Acts in 1865 and 1878, the latter of which, reproduced verbatim in 81 of the 84 sections of the Indian Forest Act of 1927 (Guha 2000), continues to shape forestry policy today. These acts consolidated exclusive state control over forests to meet the economic demand for timber – particularly driven by railroads and shipyards, in so doing alienating local communities (Sundar 2007). The colonial model of extraction continued after Independence, but the Indian state shifts its justification to commercial objectives and conservation imperatives (Gadgil and Guha 1992).

The British Acts set a precedent that was reproduced under the early Indian state, which in the Indian Forest Act of 1927 effectively reproduced, nearly in full, the earlier British Acts. This reinforced the Forest Department, as an institution working in opposition to, rather than alongside or in support of, ST and other rural forest communities (Guha 2000; Patnaik 2007).

Despite official recognition of Scheduled Tribes in Article 366 of the Indian Constitution, ST rights worsened post-Independence as large tracts of land were declared “forest” by land owners (zamindari), heads of princely states, and other private owners, through blanket government notifications (Patnaik 2007, p. 5). With the claim that ST and other forest dwellers had destroyed forest resources, and that those resources needed protection, the Wildlife Protection Act 1972 and the Forest Conservation Act 1980, brought these areas under the purview of the Forest Department.

ST have a history of conflict against the state, first against the British absorption of these communities right to use their lands and forests, and later against the Indian state and in particular the Forest Department. In waves, initially under British Rule, and with additional rounds of forest reservation by

18Gulzar, Haas, and Pasquale (2020) Appendix A reports additional details on the institutional background of Scheduled Areas as well as additional information on Scheduled Tribes.
the Indian state, implemented by the Forest Department, ST have been forcibly evicted from forests and lost their rights to collect for sustenance, as well as to sell, non-timber forest produce (Vasan 2009, p. 127; Shah 2013, pp. 431, 436).

A.4 Context in Jharkhand

The case of Jharkhand illuminates how ST contested incursions by the British and subsequent Indian government into the lands and forests among which they lived. From 1895-1900, a series of tribal revolts, the most famous of which was led by Birsa Munda and known as the great tumult (Ulgulan) protested the loss of community ownership rights to forests khuntkatti. The Birsa Munda revolt was not an isolate event but representative of many so-called ‘tribal rebellions’ on issues of land use and land alienation, focused in particular on restricting ST access to, and use of, forest products.19 In response, the British acknowledged these initial ownership and rights by means of enacting the Chotanagpur Tenancy Act in 1908 as well as the Santhal Parganas Tenancy Act of 1949. Collectively, the land covered by these two tenancy acts covers exactly the districts that were later separated from the state of Bihar to form the new state of Jharkhand in 2000 (Shah 2010; Sundar 2009). These Acts prohibit transfer of land to non-tribals and aims to protect community ownership and management rights of forest communities in ST khuntkatti areas.

In Jharkhand, scholars studying ST in the post-Colonial and contemporary periods continue to see

19These include the Chipko movement (in what is now the state of Uttrakhand), where early uprisings against the British in the 1930s and 1940s were reborn with the forest conservation movement from 1973 to 1981, which inspired future environmental movements around the world (Guha 2000). For example, in the region of Bastar (within today’s state of Chhattisgarh), initial rebellions in 1876 repeated in 1910 (Sundar 2007; Verghese 2016); in what is now Jharkhand, the Santhal Rebellion occurred in 1855. More recently, Kond communities organized protests in Kashipur block and Gandhamardan Hills regions (today part of Odisha), against the corporation Vedanta and their aluminum (bauxite) mines (Padel and Das 2010).
patterns of resistance. Vasan writes, “Forests, which are the lifeline of Adivasi livelihood, culture, and society...also been the primary target of Adivasi protest” (Vasan 2009, p. 113). Shah describes how non-state armed groups worked on behalf of ST, against state actors to gain ST support by: “bombing the state forest rest houses, burning forest jeeps, and chasing out the officers, coupled with Maoist replacement of outside contractors with locals, and raising the wages of forest product collection, have been extremely influential in gaining Adivasi support” (Shah 2010, p. 346).

In Jharkhand, the Government of India has not only restricted access to and alienated land from ST, but also encouraged industrial operation and mining operations in ST-dominated areas. Scholars have estimated that from 1951-1991, between 963,000 and 1.5m individuals have been displaced, approximately 28-43% of whom are ST. This displacement has been driven by more than 500,000 acres alienated due to mining projects and 500,000 acres were converted to national parks where individuals could no longer access their customary rights (Ekka and Asif 2000; Sharan 2009). As with respect to land and forest rights, ST and other communities have resisted these projects with protests against coal mines, dams, military facilities (Sundar 2009, p. 24).

B Measurement Error Issues

Since our outcome variable is a remote-sensing based prediction of forest cover, it is worth thinking through consequences of measurement error and data issues on our estimates. Jain (2020) discusses potential pitfalls in the use of remote-sensing data, and in particular focuses on the consequences of measurement error in raw satellite output and the importance of validation analyses. Errors in remote-sensing measures are likely ‘non-classical’ (that is, not mean-zero normally distributed) in nature. This may be caused by sensor characteristics, atmospheric conditions, cloud cover, and so on, since satellites may produce systematically worse measures of forest cover in specific places (e.g. cloudy or dusty locations). However, since our empirical strategy is longitudinal, while all systematic noise in the data is cross-sectional, these sources of error are partialled out by pixel and village fixed-effects. To see this, consider a location that is consistently poorly measured due to cloud cover, and
another which is measured with minimal error. Pixel fixed-effects estimate a separate intercept for each of these pixels, where the intercept for the first pixel is artificially low due to measurement error, while it is accurate for the latter. However, as long as changes in forest cover are appropriately captured by satellite measures, biases in the estimation of the fixed-effects do not affect the causal estimates, which depend on within-unit variation in forest cover over time. Hence, changes are likely accurately measured even if levels are not, and as such this is unlikely to be a major source of bias.

An alternate source of inconsistency is that older satellites get sunset, while newer, better ones come on line, thereby resulting in inconsistency in measurements over time. These are typically addressed in harmonization in pre-processing, as by Song et al. (2018) and Hansen et al. (2013), by fitting a polynomial trends and intercept shifts when new satellites come online. Additionally, since we estimate specifications with year and state-year fixed effects, we adjust for this source of error by letting each year have a separate intercept, which absorbs idiosyncrasies in measurement that are common across all pixels for a given year. The only way this could bias our estimates is if different locations were measured by different satellites within the same time period, which never happens.

C Discussion of Treatment Effect Size with GFC data

We calculate the implied back of the envelope effect in the GFC data in Section 6.1 by multiplying the treatment effect -0.06 with the number of treated villages 15,940 (of 52,776 forested villages. Multiplying these produces \(-0.06 \text{ Hectares} \times 15,940 = 1434.6\) hectares. Very roughly assuming that there are 1000 trees per hectare means that treatments prevented an average loss of 1.4 million trees annually compared to control areas.

20In fact, it is well known that the estimates of fixed effects are inconsistent many standard settings thanks to the incidental parameters problem (Lancaster 2000).

21State-fixed effects even account for this remote possibility by permitting each state to have its own intercept.
D Summary Statistics

D.1 VCF Data

Table A1: Summary Statistics for primary analysis sample (VCF Data) - full sample

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest cover index (0-100)</td>
<td>2204152</td>
<td>5.087</td>
<td>8.342</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>88</td>
</tr>
<tr>
<td>Non-forest green index (0-100)</td>
<td>2204152</td>
<td>68.732</td>
<td>21.297</td>
<td>0</td>
<td>64</td>
<td>77</td>
<td>83</td>
<td>99</td>
</tr>
<tr>
<td>Non-green index (0-100)</td>
<td>2204152</td>
<td>25.887</td>
<td>23.651</td>
<td>0</td>
<td>10</td>
<td>17</td>
<td>33</td>
<td>99</td>
</tr>
<tr>
<td>Scheduled Status</td>
<td>2204152</td>
<td>0.175</td>
<td>0.38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Forest Cover in 1990 (Ex-Ante)</td>
<td>2204152</td>
<td>5.463</td>
<td>9.453</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>85</td>
</tr>
</tbody>
</table>

Table A2: Summary Statistics for primary analysis sample (VCF Data) - above median forest cover in 1990

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest cover index (0-100)</td>
<td>1048662</td>
<td>9.503</td>
<td>10.319</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>13</td>
<td>88</td>
</tr>
<tr>
<td>Non-forest green index (0-100)</td>
<td>1048662</td>
<td>79.212</td>
<td>7.812</td>
<td>4</td>
<td>77</td>
<td>81</td>
<td>84</td>
<td>98</td>
</tr>
<tr>
<td>Non-green index (0-100)</td>
<td>1048662</td>
<td>11.285</td>
<td>7.288</td>
<td>0</td>
<td>6</td>
<td>10</td>
<td>14</td>
<td>92</td>
</tr>
<tr>
<td>Scheduled Status</td>
<td>1048662</td>
<td>0.263</td>
<td>0.44</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Forest Cover in 1990 (Ex-Ante)</td>
<td>1048662</td>
<td>10.75</td>
<td>11.558</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>85</td>
</tr>
</tbody>
</table>

D.2 GFC Data

Table A3: Summary Statistics (GFC Data) - full sample

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deforested Area (Hectares)</td>
<td>5181498</td>
<td>0.045</td>
<td>1.026</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>351.63</td>
</tr>
<tr>
<td>Scheduled Status</td>
<td>5181498</td>
<td>0.187</td>
<td>0.39</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ex-ante forest cover in 2000 (ex-ante)</td>
<td>5181498</td>
<td>3.406</td>
<td>9.743</td>
<td>0</td>
<td>0.007</td>
<td>0.076</td>
<td>0.738</td>
<td>89.098</td>
</tr>
</tbody>
</table>

Table A4: Summary Statistics (GFC Data) - above 2 percent forest cover in 2000

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Deforested Area (Hectares)</td>
<td>977143</td>
<td>0.214</td>
<td>2.311</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>351.63</td>
</tr>
<tr>
<td>Scheduled Status</td>
<td>977143</td>
<td>0.301</td>
<td>0.459</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ex-ante forest cover in 2000 (ex-ante)</td>
<td>977143</td>
<td>17.27</td>
<td>16.306</td>
<td>2</td>
<td>4.578</td>
<td>10.665</td>
<td>25.701</td>
<td>89.098</td>
</tr>
</tbody>
</table>
E Additional Results

E.1 Panel-match diagnostics

The outcome variable in Figure A1 is in standardized units, and therefore less likely to reject balance in large samples spuriously (Imbens and Rubin 2015). The difference between treatment and comparison groups is consistently under 0.25SD, which is the conventional threshold. Matching and visualisation was performed using the panelmatch package accompanying (Imai, Kim, and Wang 2021).

Figure A1: Balance in pre-treatment deforestation

Notes: The panelmatch algorithm seeks to match the outcome trajectories of the treatment and control units in the pre-treatment period. The above figure reports the standardised difference between the treatment and control outcomes in the 4 periods before treatment implementation, and in the year of the implementation. We see that consistent with the event study plots 5, there is some trending in the \(t - 2 \) period, but matching on the trajectory substantially attenuates this imbalance to within 0.1 SD difference.
E.2 Additional Results on The Role of Mandated Representation

Figure A2: Roll-out of Local Government Institutions in Non-Scheduled villages following the 73rd Amendment

Figure A3: Effects of Forest Rights act (2008) on deforested area in GFC data
Table A5: Regression estimates decomposed by state (analysis sample at ex-ante median cutoff)

<table>
<thead>
<tr>
<th>State</th>
<th>Forest cover index</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Full sample (1)</td>
<td>Jharkhand (2)</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PESA × Scheduled</td>
<td>0.3624</td>
<td>-0.0930</td>
</tr>
<tr>
<td></td>
<td>(0.1136)</td>
<td>(0.2088)</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>State × Year</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Village</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Varying Slopes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t (Pixel)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>t (Village)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td># Pixel</td>
<td>30,843</td>
<td>1,876</td>
</tr>
<tr>
<td># State × Year</td>
<td>198</td>
<td>22</td>
</tr>
<tr>
<td># Village</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Standard-Errors</td>
<td>Block</td>
<td>Block</td>
</tr>
<tr>
<td>Observations</td>
<td>678,546</td>
<td>41,272</td>
</tr>
</tbody>
</table>
E.3 Additional Results on Stewardship of the Forest

Figure A4: Dynamic Treatment Effects of PESA Adoption on Forest Index, Non-Forest Vegetation, and Bare Ground Indices

- **VCF Forest Index**
- **VCF Non-Forest Green Index**
- **VCF Bare Ground Index**
E.4 Additional Mining Results

This section reports additional results related to the *Opposing Commercial Interests* mechanism.

E.4.1 Data

We report the distribution of mines from the mining atlas (accompanying Asher and Novosad (2021) in A5.

![Locations of Mines in India](image)

Figure A5: Location of 20 most common minerals
E.4.2 Robustness of VCF results in main text with GFC data

Here, we report deforested area in the year before PESA against distance to mines (panel A) and treatment effects moderated by distance to mines (panel B) using deforested-area in hectares from GFC, analogous to Figure 8 using VCF data. Panel A shows that, as with the VCF data, areas close to mines experience more deforestation prior to PESA. Similarly, as shown in Panel B, treatment effects on the reduction in deforestation are greatest in areas close to mines ex-ante.

Figure A6: Deforestation and Proximity to Mining: GFC data

Panel A: Pre-PESA Deforestation Rates (area in hectares) by distance to mines

Panel B: Treatment effects on Annual Deforestation by Distance to Mines

![Figure A6](image)

E.4.3 Mining proximity: Extensive and Intensive Margin

Next, we decompose the treatment effect by tercile of distance to the closest mine in Table A6, which uses VCF data in the first 3 column, and GFC data in the remaining 3 columns. The first tercile are areas closest to the mines, while the third tercile are those areas furthest from mines. The results show that areas that are closest to the mines ex-ante, have the largest effects on forest cover and deforestation.

In Table A7, column 1, we find that villages within 5 km of a mine experienced higher deforestation
rates before PESA was implemented. In addition to studying treatment effect by proximity to a mine (the extensive margin), we also examine the effects of mining density (the intensive margin) in column 2. By intensive margin we mean the number of mines within a 5 km radius of each village in the GFC data. We find that the treatment effect size grows within PESA villages as the number of mines close to the village increase. In column 2, we decompose this coarsely by estimating separate treatment effects for villages with 1-2, 3-4, and 5 or more mines within 5km, and find that the effects of PESA are increasing in the number of mines in close proximity to the village.

\[\text{We omit the analogous analysis for VCF because VCF pixels are much larger and therefore distance to mines are very noisily measured, thereby leaving us with little variation along the moderator (distance to mines).} \]
Table A6: Regression estimates decomposed by distance to mines (ex-ante median cutoff)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Forest cover index</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5) (6)</td>
<td></td>
</tr>
<tr>
<td>Scheduled X PESA X 1st Tercile</td>
<td>0.1951 (0.0705)</td>
<td>-0.0935 (0.0225)</td>
</tr>
<tr>
<td></td>
<td>0.1373 (0.0725)</td>
<td>-0.0307 (0.0207)</td>
</tr>
<tr>
<td></td>
<td>0.2471 (0.1344)</td>
<td>-0.0812 (0.0293)</td>
</tr>
<tr>
<td>Scheduled X PESA X 2nd Tercile</td>
<td>0.1318 (0.0869)</td>
<td>-0.0981 (0.0271)</td>
</tr>
<tr>
<td></td>
<td>0.1424 (0.0773)</td>
<td>-0.0277 (0.0238)</td>
</tr>
<tr>
<td></td>
<td>0.2814 (0.1368)</td>
<td>-0.0768 (0.0382)</td>
</tr>
<tr>
<td>Scheduled X PESA X 3rd Tercile</td>
<td>-0.1256 (0.1175)</td>
<td>-0.0466 (0.0407)</td>
</tr>
<tr>
<td></td>
<td>-0.0017 (0.0996)</td>
<td>0.0177 (0.0379)</td>
</tr>
<tr>
<td></td>
<td>0.3734 (0.1752)</td>
<td>-0.0300 (0.0652)</td>
</tr>
</tbody>
</table>

Fixed-effects

Pixel	✓	✓	✓
Year	✓		✓
State × Year	✓	✓	✓
Village	✓	✓	✓

Varying Slopes

| t (Pixel) | ✓ |
| t (Village) | ✓ |

Fit statistics

# Pixel	41,449	41,449	41,449	–	–	–
# Year	22	–	–	17	–	–
# State × Year	–	198	198	–	153	153
# Village	–	–	–	57,476	57,476	57,476
Observations	911,878	911,878	911,878	977,143	977,143	977,143

Clustered (Block) standard-errors in parentheses
Table A7: Regression estimates decomposed number of mines within 5km radius (ex-ante median cutoff)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed-effects</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>village ✓ ✓</td>
<td>(1)</td>
</tr>
<tr>
<td>State × Year ✓ ✓</td>
<td>Annual Deforestation in Hectares</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
</tr>
</tbody>
</table>

Varying Slopes

<table>
<thead>
<tr>
<th>t (village)</th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ ✓</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Fit statistics

<table>
<thead>
<tr>
<th></th>
<th>Annual Deforestation in Hectares</th>
</tr>
</thead>
<tbody>
<tr>
<td># village</td>
<td>52,776</td>
</tr>
<tr>
<td># State × Year</td>
<td>153</td>
</tr>
<tr>
<td>Observations</td>
<td>897,192</td>
</tr>
</tbody>
</table>

Clustered (Block) standard-errors in parentheses
E.4.4 Results on Jharkhand Mining Licenses

We download data on mining licenses issued in the state of Jharkhand for the period 2006-2013 from the state’s official portal. We restrict attention to years close to the introduction of PESA in Jharkhand (which happened starting in 2010) because the data generating process for these data seems to have changed in the 2014-2015 period. We further restrict attention to mining licenses for forested areas, those that require a forest department approval. The unit of analysis here is the block because we were only able to match the outcomes at the block level.

Figure A7 shows that probability that a block has a mine, as well as the forest area the mine is allowed to clear does not vary across Scheduled and non-Scheduled Areas as a result of PESA implementation in 2010. Table A8 estimates these null effects in a regression. We detect statistically significant effect of the treatment on the two outcomes.

Figure A7: Licenses in Jharkhand (2006-2013), residualized for block fixed effects

Table A8: PESA treatment effects on mining licenses in Jharkhand

<table>
<thead>
<tr>
<th></th>
<th>(1) Block has mine</th>
<th>(2) Allowed Forest clearance (HA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Area X Post</td>
<td>-0.0383 (0.0437)</td>
<td>0.0367 (0.0761)</td>
</tr>
<tr>
<td>Year FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Block FE</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Dep. Var Mean</td>
<td>.104</td>
<td>.104</td>
</tr>
<tr>
<td># Blocks</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td># Observations</td>
<td>1680</td>
<td>1680</td>
</tr>
</tbody>
</table>

Standard errors are clustered at the block level.

F Software and Data used

References

Gadgil, Madhav and Ramachandra Guha (1992). “This fissured land”.

21