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1. Introduction

Delirium: You use that word so much. Responsibilities. Do you ever think about
what that means?
Dream: Well, I use it to refer to that area of existence over which I exert a certain
amount of ... influence.
Delirium: It’s more than that. The things we do make echoes.

–Neil Gaiman, The Sandman, Vol. 9: The Kindly Ones

Networks mediate the function of financial markets in myriad contexts, including but not limited
to banking systems, over-the-counter bond markets, supply chains, financial traders, and informal
financial relationships to abate risk in villages (Bramoulle and Kranton, 2007; Bloch, Genicot, and
Ray, 2008; Ambrus, Mobius, and Szeidl, 2014; Jackson, Barraquer, and Tan, 2012; Ambrus, Gao,
and Milan, 2021; Ambrus and Elliott, 2021). Both developing a positive description of how network
shape and position relates to function of the market and understanding normative implications such
as how a policymaker may want to intervene—e.g., provide liquidity—in the market necessitates
the study of which agents are of particular value in a network of financial transactions.

We study the value of agents to a policymaker in a stochastic financial network (SFN). In our
model, agents interact in a stochastic environment. Whether i is able to exchange with j—either
directly (bilateral transfers) or indirectly (transfers mediated by bilateral transfers through a pos-
sible chain of intermediate agents)—in a given state of the world can depend both on exogenous
factors and endogenous factors such as agents’ decisions to participate. This distribution over who
can interact with whom in each state of the world constitutes the SFN, which is a distribution over
all partitions of the population into various transaction markets. As will become clear, this is a
generalization of a fixed, state-invariant financial network which is a nested special case.

An agent’s centrality in the SFN is defined by the marginal value to the policymaker of providing
a small liquid asset to the agent prior to the state of the world being realized. This is analogous to
the diffusion literature where the unit of information replaces the liquid asset. Agent i’s position
in the SFN determines the other agents with whom i indirectly or directly transacts with in each
state of the world and therefore the amount of social value providing the asset to i delivers.

To better understand the SFN, let us define first a social graph (SG)—a binary, undirected
graph denoted by G—which encodes whether or not i and j are able to directly make transfers
(Gij ∈ {0, 1}). The SFN will be a distribution over sub-graphs of G, capturing two facts. First,
not all agents are active in each state of the world possibly due to exogenous shocks or endogenous
decisions or both. Let A denote the set of active agents in some state. Second, given the restriction
that an agent i can only directly make transfers to agents j who are both active (i, j ∈ A) and also
linked to i in SG (Gij = 1), for a given realization of the SFN, G may be split into disconnected
components. These are the components of the induced subgraph GA which is the restriction of G
to the set of active agents. Figure 1 presents an example to clarify the concept. The special case
in which SFN is the degenerate distribution in which every agent is always active (A = {1, . . . , n})
returns the SG as the deterministic transaction network.
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(a) Social Graph G
dictating potential
bilateral transfers

(b) Active agent
set A determined
exogenously or en-
dogenously

(c) Components of
GA: feasible trad-
ing “markets” in
realized network

(d) Social Graph G
dictating potential
bilateral transfers

(e) Active agent
set A′ determined
exogenously or en-
dogenously

(f) Components of
GA′ : feasible trad-
ing “markets” in
realized network

Figure 1. Panel A presents the social graph G which determines allowable bilateral
transfers. Panel B presents the set of active agents A in the realized state, which can
be due to exogenous or endogenous reasons. Panel C presents the induced realization
of SFN, the induced graph GA, as well as the components (or “markets”), on which
full risk-sharing can be achieved, in different colors. All isolated nodes are in autarky
in this state and consume their income. Panels D-F present the analogous sequence
for a set of active agents A′ in a different realization and the induced graph GA′ .

So the social graph determines feasible direct transfers. If SG is the complete graph, then all
agents in principle can transact with all others, barring exogenous shocks or endogenous decisions
to not participate. But if i and j are in separate components of the SG to begin with, and therefore
there are no paths from i to j in G, then in all states of the world they will be unable to transact
directly as well as indirectly. Notice, agents in one component are unable to indirectly transact
with those in another component and cannot mutually insure each other.

For standard reasons, we do not focus on how the details of the SG impacts the quality of risk
sharing beyond how it influences the distribution of components. Specifically, we follow Bramoulle
and Kranton (2007) and progeniture work wherein agents make repeated bilateral transactions with
their SG links (where Gij = 1) and thereby can implement any risk sharing arrangement at the
component level.



LIQUIDITY, FINANCIAL CENTRALITY, AND THE VALUE OF KEY PLAYERS 4

Instead, we concern our selves with the structure and centrality of agents in the SFN—that is,
the distribution of who interacts with whom in a given state of the world. We are interested in the
probability distribution over partitions of the social network into distinct components (including
isolated nodes). At times we call these distinct components “markets” (or trading rooms) since each
captures an independent connected set of agents who can implement any arbitrary consumption
arrangement at the component (market) level (Bramoulle and Kranton, 2007).

In Section 3 we define our notion of financial centrality. We ask which individuals are the most
financially central in the sense of being valued through a policymaker’s intervention, how this
centrality relates to the SFN structure and economic fundamentals, what economic foundations
give rise to such a pattern of network centrality, and what this says about normative policy (e.g.,
allocation of liquid assets).

The centralized planning problem that delivers Pareto optimal allocations is the problem of
maximizing a Pareto weighted sum of ex-ante expected utilities of agents subject to shock contingent
resource and to participation constraints. So, the financial centrality of an agent i is then the
increment in ex-ante social value, a marginal increase in the objective function of the planner,
derived from providing an infinitesimal liquid asset to i ex-ante—that is,

FCi := Marginal Social Value of giving ε > 0 to i whenever they can trade.

The first order conditions with respect to this liquidity ε, when ε is driven to zero, are then the value
of liquidity and the correct measure of financial centrality of each trader i. It is the expectation of
the joint product of the value of liquidity as the shadow price in the resource constraint and the
participation indicator of that player i. In fact, we show that even for a small (but non-infinitesimal)
amount of liquidity assets to be provided, if FCi has a unique maximum, then all of the liquid
assets will be provided to only a single agent.

Note that this has an analog in optimal seeding in a diffusion process, where one asks to which
node should a policymaker provide a marginal unit of information in order to get the most wide-
spread diffusion (Erdos and Renyi, 1959; Friedkin and Johnsen, 1997; Bollobas, 1998; DeMarzo
et al., 2003; Durrett, 2007; Jackson, 2008; Golub and Jackson, 2010). However, a key difference
with our resulting notion of centrality comes from the fact that these extra consumption goods are
scarse, and unlike information, are rival in consumption. Therefore, is not only the number of the
agents we can give this extra liquidity, but also their marginal utilitites of consumption. Therefore,
central agents are not those who get to spread the extra resources to a large number of people, but
rather those who get them to the ones that most need it.

An important consideration that emerges from our perspective is whether the liquid asset itself
changes the endogenous stochastic financial network structure. So, we introduce the concept of
being inert or responsive to provision of an infinitesimal liquid asset. When the distribution of
participation in exchange does not respond to provision of the asset, which can happen both in
exogenous but also endogenous participation models, we say it is inert. When the distribution of
interaction itself changes, we say it is responsive. We study both.

In Section 4 we present the main results of our analysis. First, in Section 4.1 taking our perspec-
tive on financial centrality, we characterize the financial centrality of agents in terms of the structure
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of the stochastic network and economic fundamentals. The result is intuitive, but distinct in an
important way, from standard analyses of network centrality in financial market. Typical analyses
follow an intuition that agents who are highly linked, either directly or indirectly, are very central:
shocks propagate further. Our results highlights an important other feature which can dominate
the analysis. Central agents are those who are not simply ever-present. Rather, they are those who
have numerous links with other agents who themselves have few alternative transaction partners.
Said differently, let dGA,i be the degree of i when A is the set of active agents in the induced
graph GA. Then i is particularly central when neighbors j (GA,ij = 1) have dGA,j small for typical
realizations of active agents A.

That is, agents are more central if they link with less, rather than more, central agents and are
present exactly when markets are thin. This is because when agents exhibit prudence, the expected
marginal utility of consumption is an increasing function of average consumption volatility, which
decreases when markets are bigger. When there is heterogeneity among agents—for instance they
vary in variability of shocks, or agents who are connected have correlated shocks— central agents
are those who are linked to sets of individuals with variable or correlated financials (e.g., similar
occupations, similar portfolio holdings). This characterization of financial centrality stands in stark
contrast to typical ideas of central nodes in the financial network and also contrasts with more broad
notions of centralities in many disciplines. Those perspectives say i is more central if those around
you are more central. Our result proves exactly the opposite is true: i is particularly valuable if i
links with the “weak”.

Second, we then consider foundations for centrality in Section 5. From the perspective of an
Arrow Debreu economy, we show that financial centrality is the price of a personalized debt asset
that implements the planner’s optimal allocation as a Walrasian equilibrium with transfers. We
also consider bargaining foundations. We show that when agents bargain to establish rules as to
how value is split in the network, financial centrality precisely determines how these shares are
determined. Under Nash bargaining, there is a positive linear relationship between the represent-
ing Pareto weight on the bargaining solution allocation and the financial centrality measure. The
analysis suggests a unique pattern to look for in the data, not predicted by other standard models:
agents who transact with others who themselves have fewer transaction partners, as well as transac-
tion partners who have clustered shocks and more variable shocks, will have higher centrality and
therefore receive greater average consumption in a risk-sharing environment. Risk-sharing data
from Thai villages are consistent with these bargaining foundations.

Third, as shown in Section 6.1, our results are generalizable to settings in which agents can
endogenously choose to enter the market. The SFN can respond to incentives as well as the very
provision of the liquid asset.

Fourth, in Section 6.2, we generalize the model to include larger discrete liquid assets, turn to
normative policy considerations, and confirm the earlier measures of valuable traders should be
used to direct the provision of these assets. Thus, just as the earlier notions of financial centrality
consistent with ex-post shocks and contagion have influenced the way policy makers think about
prudential regulation, here our ex-ante measure of financial centrality could be used to think about
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monetary policy. We are reminded of Jeremy Stein’s 2013 discussion1 of how central bank liquidity
should be priced ex-ante in an auction—a price which in turn could serve as a guide to policy makers
concerning market conditions, a feedback loop to policy. Our contribution would be a measure of
which traders or institutions have a key value in channeling the incremental liquidity to the market.

Section 7 is a conclusion. All proofs unless otherwise noted are contained in the appendix. Fur-
ther, the appendix contains considerable generalizations of our analysis. Specifically, we (a) provide
a generalization to markets with heterogenous fundamentals (e.g., Pareto weights, risk-preferences,
dependent endowment processes); (b) provide generalized foundations for market participation; (c)
extend the analysis to multiple segmented markets; (d) analyze several contrasting examples of
endogenous participation.

2. Related Literature

Our work speaks to various seemingly distinct branches of the literature: risk sharing in networks,
financial market risk, and supply chain disruptions. We provide a unifying framework and, to the
best of our knowledge, unique contributions.

One branch of the literature studies risk-sharing networks (see e.g., Bramoulle and Kranton
(2007); Bloch, Genicot, and Ray (2008); Ambrus, Mobius, and Szeidl (2014); Jackson, Barraquer,
and Tan (2012); Ambrus, Gao, and Milan (2021); Ambrus and Elliott (2021)) from a variety of
angles: e.g., how repeated bilateral transfers may facilitate perfect risk-sharing at the component
level irrespective of network topology, how the topological structure affects the extent of insurance
sustained, the role of capacity constraints, endogenous formation with concerns of stability. We
build on the assumption in the literature that agents can only make bilateral transfers to those with
whom they share a link in the social network and maintain that with repeated bilateral transfers
agents can always perfectly smooth risk at the component level of the realization of the stochastic
financial network (absent other frictions). The core innovation is to allow for arbitrary exogenous
and endogenous activation of nodes into the risk-sharing environment and study financial centrality
as per our concept in this case. In contrast to much of the above literature where central agents are
often characterized by their value in shock dissipation (comparable to Bonacich centrality and other
eigenvector-like centralities), our work distinctly focuses on what makes individuals central, in the
sense of the planner’s objective function when considering the provision of a liquid asset, when
participation is exogenous or endogenous. So, while our results will of course involve eigenvector-
like centrality components, a new, dominant piece will factor into the measure of centrality which
is captured in our model.

A second branch focuses on financial markets and liquidity risk. For instance, in Duffie et al.
(2005) there is a single underlying consumption good and two types of assets, a safe liquid asset
such as a bank account which can be traded instantaneously, and a consol that requires finding
a trading parter, in a search environment. Traders buy and sell these assets among themselves
and with market makers. Search frictions make the markets imperfect. For us here in this paper,
we feature risk averse traders who would like to hedge the income risk from the portfolio they
hold, but who suffer from market participation risk. Relatedly, Longstaff (1992) studies the value

1https://www.federalreserve.gov/newsevents/speech/stein20130419a.htm
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of liquidity and the distinction between on-the-run vs off-the run treasuries. Liquidity can vary
across assets. However we do shift the emphasis and language somewhat from limited asset trade,
in which some assets provide liquidity in disruptions, to limited market participation, with a focus
on traders, specifically which key traders can provide liquidity to those who remain. Further, Weill
(2007) studies the role of market makers in providing liquidity when there is large and temporary
pressure as well as order execution delays. He refers to market makers as leaning against the
wind. The paper studies optimal dynamic liquidity provision in a theoretical market. In our
paper, key traders look like market makers in the sense that they provide liquidity to a subset of
traders. However, unlike Weill (2007) we focus on quantifying the value of such market makers and
potential heterogeneity among them. Like Weill (2007) we also move beyond marginal movements
in liquidity and study optimal central bank provision liquidity, which should identify key traders as
those to whom liquidity should be targeted ex ante. Lagos and Zhang (2020) also feature the role
of Central Banks in the provision of liquidity in wholesale markets. A monetary authority injects
or withdraws money via lump-sum transfers or taxes to investors in the second sub-period, in the
Walrasian market. We adopt an extreme version of this; liquidity can only be injected via traders
carrying it into markets and not when agents are in autarky.

A third branch focuses on contagion in financial networks. Much of this literature focuses on
a kind of non-linearity, whereby positive and negative shocks propagate asymmetrically through a
network. For instance, with solvency constraints, a positive shock may leave the network intact
whereas a large enough negative shock may have a large adverse impact on welfare. Intriguingly,
agents may vary in whether they are central for positive versus negative shocks and further, the
optimal network structure may vary in the size of the shock (e.g., for small shocks the complete
graph but for large shocks the empty graph).2 Our notion of centrality is different.

3. Model

We begin by introducing the general model of the stochastic financial network, providing some
examples of special cases, and establishing the planner’s problem.3

3.1. Setup.

3.1.1. Preferences. Consider an economy with a set I = {1, ..., n} of agents, one good, and one
period. This can easily be generalized to multiple goods and periods.

Agents face idiosyncratic income risk, where y = (y1, ..., yn) denotes the vector of income realiza-
tions for all agents in the economy, which we assume are drawn from some distribution F (y). Let
µi = E (yi) denote the mean, σ2

i = E (yi − µi)2 the variance, and Σ the variance-covariance matrix.
2The theory is developed in, among others, Allen and Gale (2000), Freixas et al. (2000) and Eisenberg and Noe
(2001), Gai and Kapadia (2010), Blume, Easley, Kleinberg, Kleinberg, and Tardos (2011), Battiston et al. (2012),
Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Elliott, Golub, and Jackson (2014), Acemoglu, Ozdaglar,
and Tahbaz-Salehi (2015), Farboodi (2021), Babus (2016), Elliott and Hazell (2016), Cabrales, Gottardi, and Vega-
Redondo (2017), and Farboodi et al. (2022). Empirical work includes Upper and Worms (2004), Bech and Atalay
(2010), Boss et al. (2004), Cohen-Cole et al. (2013), Craig and Von Peter (2014), Cont et al. (2013), Langfield et al.
(2014), Jaramillo (2012), and others. See Allen and Babus (2009), Summer (2013), and Acemoglu, Ozdaglar, and
Tahbaz-Salehi (2016) for surveys.
3In the Online Appendix B, we provide other interpretations of the notation: financial markets with limited partici-
pation and supply chain economies with production shocks and limited networks.
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Agents have expected utility preferences, with utility function ui (ci), which we assume to be
strictly increasing, strictly concave, and sufficiently smooth. Agents exhibit prudence: u′′′i (c) > 0.

3.1.2. Social Graph (SG). Individuals reside in an undirected, unweighted social graph (both of
these can be relaxed) G, with Gij ∈ {0, 1} denoting whether there is a social link between agents
i and j. As a shorthand we call them friends, though in practice agents may be banks, firms, and
so on and G represnts arbitrary constraints. We assume that G is connected meaning there exists
some path between every pair of nodes, so it has just a single component.

The function of SG is that i can directly transact with j if and only if Gij = 1. As is well-known
in the literature, the results of Bramoulle and Kranton (2007) show that with repeated biliateral
transfers among friends any connected component in a graph is able to fully smooth risk within
the component, irrespective of the specific details of the network topology (under the assumptions
maintained in this paper). All that matters is the component is connected so eventually any amount
required can be indirectly transferred between any two members of that component to facilitate
full risk-sharing.

3.2. Stochastic Financial Network (SFN).

3.2.1. Active Agents. To understand the SFN, we first define active agents. These are individuals
who in a given state actively participate in interpersonal transactions due to either chance or
endogenous choice. Let A ⊂ I be the set of active agents. These are the agents who are able to
make transfers to other active agents; the inactive agents only consume their endowments. Let GA
be the subgraph of G induced by A, with GA,ij = 1 if and only if i, j ∈ A and Gij = 1. Thus, GA
is the restriction of G to the nodes in A.

Notice that just because G is fully connected does not mean that GA is fully connected as
depicted in Figure 1. The network of feasible transactions given active agent set A may have
several connected components. While members of each of these components can transact with each
other indirectly, no cross-component transfers in GA is possible.

The distribution over A, the set of active agents, determined both due to exogenous shocks and
endogenous responses, therefore determines a distribution over GA. This distribution, P (GA) can
depend on (a) exogenous random factors such as opportunities to transact and (b) endogenous
responses to the realization of the random endowment y. It is the relevant object for our analysis
since it describes which individuals are able to transact with which and in what state.

3.2.2. The Fully General Stochastic Financial Network. There is nothing special about having one
set of active agents all of whom who can mutually transact as long as they are connected in the
graph. We generalize this.

Let P be the set of all partitions of the set of nodes I, Let π ∈ P denote a partition and pπ ∈ π
denote a part of this partition. If i, j ∈ pπ are members of the same part, we say there is an
equivalence relation i ∼π j.

Given a partition π, there is an induced subgraph Gπ where

Gπ,ij =

1 if Gij = 1 and i ∼π j

0 otherwise.
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Agents are connected in the subgraph if and only if (a) they are members of the same part of
the partition and (b) they have a social relationship in the base social graph (so Gij = 1). It is
immediate that this is a generalization of the above example of a single set of active agents.

We are interested in a probability distribution P (Gπ) of subgraphs of G induced by a prob-
ability distribution over the set of all partitions P. It is useful to track the components in-
duced by the partition. Gπ may contain a collection of r disjoint connected components. We let
Mπ = {m1,m2, . . .mr} be the list of these components, which we interchangeably call “markets”
or “trading rooms” which provide more familiar nomenclature for various applications.

We are now ready to define the stochastic financial network. Let the state be a pair (π, y) of a
partition and a realized income endowment, denoted s ∈ S := P × Rn. The stochastic financial
network is a probability distribution P (s) over S which may arise due to exogenous or endogenous
factors. We describe examples below.

3.2.3. Feasible Transactions in the Financial Network. Consider some realized state s. Define a
variable that captures if an agent is active in a given component for each partition π: ζπi = k if
i ∈ mk and |mk| > 1 and ζπi = 0 if i ∈ mk = {i}. Thus, ζπ denotes which part of the partition i is
in, and sets all isolates to 0 for convenience.

Isolated individuals are not active and therefore ci = yi when ζπi = 0. Meanwhile, by assumption
as in Bramoulle and Kranton (2007), since agents can indirectly transact with any other in the
same connected component, through repeated bilateral transfers with their friends, we can write

(3.1)
∑
i∈mk

ci ≤
∑
i∈mk

yi for every mk ∈Mπ.

Note that this includes the isolates since in that case mk = {i}. This expression says that for
every component or market, the total amount of consumption may not exceed the total endowment
among the members of this component.

3.2.4. Examples of Stochastic Financial Networks. We provide two simple examples of stochastic
financial networks,

Example 3.1 (Percolation/Contagion Process). In this example, prior to income realization, a set
of individuals are seeded with some information that increases their odds of actively participating
in financial exchange. This information rapidly diffuses through the network generating some set
of active agents prior to the realization of incomes. For example, this could simply be that some
people hear that there will likely be some need to engage in risk sharing this season and then word
spreads quickly. Or, in contrast, it could be that some households hear about an opportunity to
temporarily migrate to the city from their village and this information diffuses—active risk-sharing
agents back home are those who stayed, having never received the diffused information.

More formally, consider a communication process that occurs (instantenously in the model from
communication rounds t = 0, . . . , T ) prior to the one-shot risk-sharing phase. At t = 0, a set of
seeds J ⊂ I is shocked to to be active, ζJi = 1 for every i ∈ J . Then the process diffuses through the
network through discrete time where in each period t, every node that has been activated ζJi = 1
infroms and activates each of its neighbors i.i.d. with probability α. When made active, nodes
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stay active. The process terminates after T periods. After T periods, the active agents are able to
engage in financial exchange.

This microfounds the SFN, a resulting distribution over which nodes are active through T periods,
which is a distribution over π and thereforeMπ. HereMπ would denote all nodes that are active and
part of the same component in the induced subgraph among active agents. This contagion process
is a stylized example for a number of things. This could include hearing about an opportunity or a
new need, being informed that financial exchange is happening (as in through an informal financial
group such as a RoSCA), having a correlated outside option such as hearing about temporary
migration and exiting the village, and so on. The general point is an exogenous percolation process
of any kind, for any reason, naturally generates a distribution over components of active agents as
well as isolates and therefore determines the SFN P (s).

Unlike the previous example, the next example looks at an endogenous determination of P (s).

Example 3.2 (Endogenous Participation). In this example G is a complete graph, so Gij = 1 for all
i 6= j meaning that all bilateral transfers are possible throughout any component realized. However,
agents face some private entry cost ki to be an active participant in the financial transaction.
For instance, there may be other obligations or outside options such as temporary migration in
the season. There is a Bayes Nash Equilibrium with cutoffs where the probability distribution
of the stochastic financial network P (s) is driven by the distribution over costs and the resulting
equilibrium entry decision (who chooses to be active given their costs and their beliefs about others’
costs determines π). We study this in Section 6.1.

3.3. The Planner’s Problem. Going forward, unless otherwise noted, we simplify exposition by
focusing on the case where only one “market” is formed. That is, the distribution is such that there
is exactly one non-trivial component and the remainder of nodes are isolated. In Online Appendix
F we explore a generalization with several components (simultaneous segmented markets), and
show how to map all of the results of this special model to the general case. We focus on the single
market case for expositional simplicity since the multiple component case is conceptually identical
but notationally cumbersome.

Formally, let ζ ∈ {0, 1}n be the participation vector (which formally we can model as a shock
to the consumption set of agents). We can take ζi as binary precisely because we focus on the
“single market” case. As previously noted, participation includes both exogenous as well as a wide
class of endogenous participation models, described below. Here if ζi = 0 then ci = yi. However, if
ζi = 1, then consumption and income do not have to coincide as agents can make transfers in such
states. The relevant state, in the Arrow and Debreu sense of enumerating all shocks and indexing
the commodity space by them, is then s = (y, ζ) ∈ S := Rn+ × {0, 1}

n. A feasible consumption
allocation is a function c (s) = (ci (s))i∈I such that, for every s = (y, ζ), ci (s) = yi whenever ζi = 0
and it is resource feasible: i.e.,

∑
i ζici ≤

∑
i ζiyi for all s.

State s is drawn from a probability distribution P (y, ζ) which is common knowledge among
agents, and we assume the support of the distribution, S, to be discrete for most proofs, for
expositional simplicity. This is a primitive of our baseline environment.
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The timing of the realization of income and market shocks matters and will give rise to different
measures of centrality. The baseline assumption in most of the paper considers income and market
participation shocks as independent random variables. One can think about this as a case where
market participation, ζ, is assigned first and then, independent of this, income shocks y are drawn.
This may describe exogenous settings in which transaction opportunities arise, to first order, from
a set of pre-determined agents (e.g., relatives or individuals with whom trust has been established
over many years, or as in supply chains) and where shocks to availability, awareness, or costs further
affect participation. It also describes some endogenous settings more generally, described below.

Suppose the allocation can be determined as if there were a planner who tries to choose among
resource feasible allocations to maximize a linear welfare functional,4 with Pareto weights vector
λ ∈ Rn+, effectively choosing c (s) to solve:

(3.2) V (λ) := max
(ci(·))i=1,...,n

Es

{
n∑
i=1

λiui [ci (s)]
}

subject to

(3.3)
n∑
i=1

ζici (s) ≤
n∑
i=1

ζiyi (s) for all (y, ζ)

and

(3.4) ci (s) = yi for all s = (y, ζ) : ζi = 0.

We therefore consider a setting where a set of n agents who may have heterogeneous preferences,
heterogeneous income processes, endogenous participation decisions, and for whom the planner has
heterogeneous Pareto weights, are assigned consumption allocations that maximize the planner’s
objective function, as a way of generating and characterizing constrained Pareto optimal allocations.

It should be clear that our environment covers numerous applications such as an economy with
liquid assets, production networks, income as portfolio returns, among others. Next we provide an
example to illustrate this with other examples in Online Appendix B.

Example 3.3 (Policy Experiment: An Economy with Liquid Assets). Consider an extension
where agents face income risk, and have investment opportunities. Namely, let s̃ ∈ S̃ denote
the underlying aggregate state of nature. Agents have underlying income streams ei (s̃), and let
e (s̃) = (e1 (s̃) , . . . , en (s̃)) ∈ Rn endowment realizations for all agents in the economy. There is a
tradable, consumable asset available for purchase/sale or reallocation by the planner, with a gross
return of 1, which we refer to as a “liquid asset”. Thus here “market access” is not only the abil-
ity to trade with other agents, but also access to an external market, where the liquid asset can
be traded for consumption goods. We regard this asset as providing liquidity, effectively a bank
account with zero net interest. With more than two states s, the asset market structure here is
exogenously incomplete, allowing some but not all transformation and smoothing of intertemporal
consumption. Let Ai for agent i be her endowment of liquid assets in the economy. Let ti (s̃) ∈ R be
the ex-post consumption good net transfers that the social planner chooses to smooth consumption

4We also consider the case where the planner cannot choose c (·) (Online Appendix F.2).
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risk. Consumption for each agent is then ci (s̃) = ei (s̃) if ζi (s̃) = 0 and

(3.5) ci (s̃) = ei (s̃) +Ai + ti (s̃)

if ζi (s̃) = 1. Transfers need to net out among trading agents; i.e.
n∑
i=1

ζi (s̃) ti (s̃) = 0 for all s̃ ∈ S̃.

To map this environment into the general, reduced form model, given the initial allocation of liquid
assets A, we define s =

(
yA (s̃) , ζ (s̃)

)
where

yAi (s) = ei (s) +Ai if ζi (s̃) = 1 and yA (s) = ei (s) otherwise.

3.4. Financial Centrality. Our definition of financial centrality is motivated by the policy ex-
periment illustrated in Example 3.3. Specifically, we define our measure of financial centrality of
an agent i as the increment in value for the planner of providing a liquid asset to agent i whenever
they can trade. The liquid asset corresponds to giving ε > 0 to agent i each time they are in the
market, so

∀ (ζ, y) : ζi = 1 =⇒ y′i = yi + ε.

This is an increase in the expectation of yi conditional on the agent having market access (ζi = 1).
Let Vi,ε (λ) be the maximum value of program (3.2) given such an asset provision to agent i.

Definition 3.1. We define financial centrality of agent i ∈ I as

FCi := ∂Vi,ε (λ)
∂ε

|ε=0.

One justification for this is that it is analogous to the diffusion case where the goal is to maximize
take-up and the policymaker is interested in seeding some node with information, which plays the
role of the asset. A related justification is as follows. From the planner’s perspective, the agents in
the economy can be thought of as assets, in the sense of Lucas Jr (1978). When a planner considers
providing liquidity, the role an agent plays is to be available to trade: the agent only fulfills the
role when they are available of course. This corresponds precisely to the idea of an asset that pays
only in certain states—in this case being present. Consequently, the fundamental value of the asset
corresponds precisely to integrating over the marginal increments in social welfare, given by the
equilibrium pricing kernel, over all states where the asset pays (again, here being present).

Example (Liquid Assests (cont.): Must Be Allocated to One Agent). Returning to Example
3.3 with initial endowment of liquid assets A = {Ai}i∈I and an income distribution defined as
yi (s) = ei (s) + ζiAi, so agents can utilize extra liquid assets when active. Imagine now that the
social planner can increase the total supply of liquid assets by ε > 0. We show that financial
centrality not only gives the marginal social value of liquidity, but also that for any total supply of
liquid assets below some threshold ε, all the excess supply liquidity should be allocated to the agents
with highest financial centrality. When FCi is uniquely maximized, then even a non-infinitesimal
amount will be allocated to only one agent.
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Proposition 3.1. Suppose V (A) is differentiable and let φ∗ = maxj FCj. Let ∆A∗i,ε denote the
optimal increase in liquid assets for agent i. Then, there exist ε > 0 such that if ε < ε then
∆A∗i,ε > 0 if and only if FCi = φ∗.

The intuition behind the second part of Proposition 3.1 relies on the fact that if V is differentiable
at t = 0, then it is approximately a linear function, and hence it is locally maximized by allocating
all the resources to the agent with highest marginal value, given by our notion of financial centrality.
We study the large transfer case, beyond ε, in Section 6.2.

3.5. Inert and Responsive to Liquid Asset Provision. We say that an environment is inert
to the provision of infinitesimal liquid asset if P (s) is constant under changes in E (yi | ζi = 1), for
all i ∈ I, y ∈ Y and ζ : ζi = 1. This would be the case if the market formation process (either
exogenously determined or endogenously determined) is completely independent from the income
distribution, and would have the feature that a marginal liquid asset has no effect on the market
participation distribution. Consider an example wherein individuals decide whether or not to enter
a market knowing the set of others who have the opportunity to participate in this state of the world;
participation has some known fixed cost. In (the pure strategy maximal entry) equilibrium, all or
no such agents choose to participate and in the homogenous parameter case agents’ decisions purely
depend on the number of other agents who have the opportunity: there is a threshold participation
opportunity size above which all agents will participate. An infinitesimal liquid asset clearly cannot
change this endogenous distribution of participation decisions. Further, if the equilibrium with
maximal entry is inert, then so is a mixed strategy equilibrium with independent mixes.

Environments where the above property fails are models that are responsive. All exogenous
market participation models are inert. Endogenous market participation environments may be inert
or responsive, and this depends on the details of the model. An example of such an environment
(which we will study) is one where agents have to decide whether to (costly) access the market or
not, before observing income draws. In this environment, agents draw fixed market participation
costs ki ≥ 0 from some distribution G (k1, . . . , kn) which has full support in an interval in Rn,
and decide to access the market if the expected utility of having market access (integrating over
income draws and market participation decisions of other agents) net of the trading cost ki exceeds
the expected autarky value. In any equilibrium, agents will have a cutoff cost such that they
only access the market for low enough ki. This model will typically display responsiveness to
infinitesimal liquidity since the asset would, in particular, increase the expected utility of for agent
i from getting market access (ζi = 1), therefore changing the equilibrium market participation
distribution. In environments where agents endogenously influence the income distribution (through
costly production or by choosing an investment portfolio) the liquidity can have effects on changing
the income distribution at the margin. We study an environment with endogenous investment
decisions in Online Appendix H.

More formally, decompose P (s) = P (y) P (ζ | y). We want to understand how the provision of
the liquid asset may affect the probability of each original state. For this, we need to write a model,
which will give as a result the score of the state with respect to the small asset εi. Formally, a model
will be a mapping εi → P (s | εi), with the associated score function (with respect to a marginal
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provision to agent i) defined as

Si (s) := ∂ ln [P (s | εi)]
∂εi

|εi=0

which (if desired) can be decomposed into the score of the income distribution, and the score of
market participation (given income) simply as Si (s) = Si (ζ | y) + Si (y), where the former term is
the market participation effect and the latter term is the income effect.

An environment will be inert when Si (s) = 0 almost surely and responsive otherwise. An
important thing to note is that when ζ is independent of y, this does not mean that the score turns
to zero: but rather that it gets simplified to Si (s) = Si (ζ) + Si (y).

4. Results

4.1. Financial Centrality and Network Structure. We begin by demonstrating that financial
centrality can be written as two terms composed of the inert and responsive components. All proofs
are in Appendix A unless otherwise noted.

Proposition 4.1. Suppose the environment is responsive to infinitesimal liquidity injection, and
that c (·) solves program (3.2). Then financial centrality can be written as:

FCi := Es {ζiq (s)}︸ ︷︷ ︸
inert component

+Es

{∑
i∈I

λiui (ci (s))× Si (s)
}

︸ ︷︷ ︸
responsive component

.

It is instructive to decompose this into three effects: (i) risk sharing; (ii) participation; (iii)
income distribution. Since we can write Si (s) = Si (ζ | y) + Si (y), we can separate the responsive
component and write financial centrality as a function of three interpretable quantities.

FCi := Es {ζiq (s)}︸ ︷︷ ︸
risk sharing effect

+Es

{∑
i∈I

λiui (ci (s))× Si (ζ | y)
}

︸ ︷︷ ︸
participation effect

+Es

{∑
i∈I

λiui (ci (s))× Si (y)
}

︸ ︷︷ ︸
income distribution effect

.

In order to explore this further, let us assume that we are in the simplest possible case where all
agents are identical, each have the same Pareto weight, and income is drawn i.i.d. Let nζ :=

∑
i ζi

be the market size at market ζ, and h (ζ) := Ey [q (y, ζ)]. We characterize financial centrality in
this environment and it is easy to see that here we have inertness.

Proposition 4.2. Suppose ui = u and λi = 1/n for all i, and income draws are independent
and identically distributed across agents. Then q (s) = u′ [y (s)] and ci (s) = ζiy (s) + (1− ζi) yi.
Moreover, if u (·) is analytic then we can approximate h (ζ) ≈ u′ (µ)

(
1 + γ σ

2

nζ

)
, where γ :=

(1/2)u′′′ (µ) /u′ (µ). Therefore,

(4.1) FCi ∝ P (ζi = 1)×
[
1 + γσ2E

(
1
nζ
| ζi = 1

)]
.
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An intuition is as follows. Centrality can be decomposed into two pieces. Financial centrality is
higher when (1) the agent has a higher probability of trading (P (ζi = 1) ↑) and (2) the market size
conditional on the agent entering is smaller. Finally, the degree to which each of these matters can
depend on features that characterize the vulnerability of the members of the realized component:
the mean income, degree of risk aversion, degree of prudence (convexity of marginal utility of
consumption, which governs precautionary savings), and variability of income (measured by the
coefficient of variation).

We generalize this considerably in Section A.2, particularly in Proposition A.1 to allow for
heterogenous preferences, volatilies of income, correlations in income, and aggregate shocks. Here
we show that in the case where ui (c) = −r−1

i exp (−ric) and y ∼ N (µ,Σ) we can obtain a closed
form expression for financial centrality:

FCi = Eζ

{
ζi exp

(
−rζµζ

)
λζ exp

(
r2
ζ

2 ×
σ2
ζ

nζ

)}
,

where µζ := n−1
ζ

∑
j ζjµj and σ2

ζ := n−1
ζ

∑
ζjζkσjk are, respectively, the average mean and variance

of income for the agents present at market ζ, rζ =
(
n−1
ζ

∑
ζjr
−1
j

)−1
is the harmonic mean of the

absolute risk aversion of agents present at ζ, and λζ = exp
[
n−1
ζ

∑
ζi (rζ/rj) ln (λj)

]
is a geometric

weighted average of the Pareto weights of agents present at ζ, weighted by how risk averse they are
compared with the market average.

The robust implications of this are as follows. First, again we see that agents who tend to
participate when the component (or trading room) is has few nodes are more financially central.
Second, agents who tend to participate when those whom the planner values more are more central.
Third, those who participate when there is greater volatility are more central. This could be because
the agents have more volatility themselves or even because agents have more positively correlated
incomes so the aggrate exhibits greater variance. Fourth, agents are more central if the average
agent in the market has a lower endowment in expectation when the agent in question is in the
market. Fifth, agents are more central if the degree of risk aversion when the agent is in the
market is higher. Overall, the notion of financial centrality captures a generalized notion of market
thinness. The planner values the agents precisely whom are able to provide transfers to others who
need it when they are in particular dire need. In doing so, the planner takes into account who will
be in the realized component in equilibrium. Though this is intuitive, it provides an economically
relevant relationship between our fundamentals and a notion of centrality.

Example 4.1 (Inviting Neighbors in SG (Special Case of Example 3.1)). We consider a stylized
example of market formation where individuals are called to trade with their neighbors in SG. We
provide richer examples in Online Appendix D. Imagine that when an agent i is called to trade in
some state, they invite all their friends. That is, the entire neighborhood of agent i in G.5 In such
a case, the resulting SFN is simply a distribution over all neighborhoods of agents j = 1, ..., n in
the network with weights given by the probability that j is called to be the market organizer.

5To give an example for the case of endogenous participation, imagine this graph to be such that for every node
every neighborhood represents the set of individuals who have the opportunity to participate and in equilibrium this
neighborhood does attend the market. In such settings, it is without loss to proceed as if participation is exogenous.
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Figure 2. Two agents in a large social graph G (not necessarily fully pictured),
i and j, in Panels (A) and (B) respectively. Many typical measures of centrality
(e.g., eigenvector-like centralities) would treat j as being more central than i, ceteris
paribus, since they have the same degree and j’s neighbors’ degrees are higher. Our
notion of financial centrality ranks FCj < FCi.

More specifically, let di :=
∑
j Gij denote the degree of node i (here with Gii = 1) and let

Ni := {j ∈ I : Gij = 1} denote the neighborhood of i. Participation is drawn as follows. With
probability zi = 1

n , each agent is selected to be the host. Then ζi = 1 and also ζj = 1 {j ∈ Ni}. We
can compute financial centrality as

FCi = 1
n

di + γσ2∑
j

Gij
dj

 .
Agents who have larger neighborhoods in SG are more financially central (from the di term) in
the usual way, but in particular holding that fixed agents that have neighbors who have smaller
neighborhoods are more financially central (from the 1

dj
term). The notion of financial centrality

derived from our model may be quite different from traditional notions of centrality, such as degree,
betweenness, eigenvector-like (e.g., Katz-Bonacich) centralities, among others. To see the contrast,
observe that rather than one’s centrality increasing in the degree of ones’ neighbors, one’s centrality
declines if ones’ neighbors have higher degree.

In Figures 2a and 2b, we compare two agents i and j in different parts of a large network (so
n is the same for both of them). Observe that agent j in Figure 2b is more central than the one
in Figure 2b, i, according to most commonly used centrality measures, since they can reach more
agents in the same number of steps (higher eigenvector centrality, for example). However, the agent
j is less financially central in the induced stochastic financial network than i, since (a) it has the
same probability of having market access, but (b) the markets they have access to are bigger (in the
first order stochastic dominance sense) to those that agent i reaches, and is hence less important.
This is because of the logic of consumption variance reduction: a dollar given to the agent i will
reduce consumption variance a lot more than agent j.

We conclude this section with an observation on the case of segmented markets where the sto-
chastic financial network generates states wherein by chance or choice there are multiple non-trivial
components of active agents in the network. Recall that for some realized partition π ∈ P, the list
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of components was given by Mπ = {m1,m2, . . .mr}. In Proposition F.1 (Online Appendix F.1)
we show that the centrality formula for inert environments is equivalent to the centrality measure
in an economy where we only consider “active markets” where agent i is present (since they can-
not affect the consumption of agents in other markets). In particular, using the CARA-Normal
model as before, but now with market segmentation, financial centrality is essentially the same.
Let mi = mi(s) be a random variable denoting the market that i is active in, in a given state s.
Then the financial centrality is

FCi = Es

{
ζi exp

(
−rmiµmi

)
λmi exp

(
r2
mi

2 ×
σ2
mi

|mi|

)}
where mi is the market where i is participating, and for any market m ⊆ I, we define the average
volatility as σ2

m := 1
|m|
∑
{j,k}⊆m σjk, rm =

(
1
|m|
∑
j∈m

1
ri

)−1
is the (harmonic) average risk aversion

in market m, and λm := exp
(

1
|m|
∑
j∈m

rm
rj

ln (λj)
)
is the geometric average of the agents Pareto

weights, weighted by their relative risk aversion (with respect to the market average rm. The key
point is that now centrality for an agent can be thought as in reference to only their interactions.
The single relevant market in each state when calculating their value to the planner is simply the
component they are in and none other.

5. Foundations for Financial Centrality

In this section we provide two foundations. First, we look at an Arrow Debreu economy. We
demonstrate that, as defined, financial centrality is the price of personalized debt. Second, we take
seriously the view that agents may interact in a cooperative bargaining phase underlying the risk-
sharing division of surplus. Asymmetries in the social graph, along with features of the economic
environment, may privilege some agents above others. We show that the Pareto weights implied in
the planner’s problem describing the equilibrium allocations coming from this bargaining process
exactly capture financial centrality. That is, if agents bargained over division of surplus and then
parttook in risk-sharing through the SFN, exactly those who are more financially central in our
sense would be those who receive higher Pareto weight in the planner’s problem corresponding to
this outcome.

5.1. An Arrow Debreu Economy: Financial Centrality as the Price of Personalized
Debt. First we study an Arrow Debreu economy. The main assumptions we need for results in
this section are inert market participation and that income and market participation shocks are
independent; without this assumption, there could be non-pecuniary externalities in the market
participation decision which will not be reflected in the equilibrium prices (i.e., we may lose the
constrained-efficiency result).

We consider an Arrow Debreu economy, where agents can buy and sell claims on income and
consumption, contingent on the configuration of the market and the nature of income shocks.
However, agents cannot buy or sell income claims that will pay off in states where they are unable
to trade (since there is no physical way to make such transfers), which we formalize as “consumption
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space shocks” as in Mas-Colell et al. (1995). Formally, let Aŝ denote the Arrow Debreu (AD) asset6

that pays 1 unit of the consumption good if the state is s = ŝ, nothing if s 6= ŝ, and ai (ŝ) ∈ R
the demand of asset Aŝ=s by agent i. Indexing on the named player allows those in the market to
acquire the liquid asset held by that player.

Consumption for agent i at state s = (y, ζ) is then ci (s) = yi + ai (s). The market participation
constraint can be introduced by imposing a physical constraint: whenever ζi = 0 we must have
ai (s) ∈ {0} (i.e., agents cannot trade in assets that they will not be able to be present in the
market to clear the trades ex-post).

To simplify proofs and exposition, we consider cases where there is only a countable number of
possible income shocks, so that S =

∏
i (Yi × {0, 1}) is also countable, and where P (s ∈ S) > 0

for all s ∈ S. Given Arrow Debreu prices r̂ (s) for each As and a vector of lump sum transfers
τ = (τi)i∈I , such that

∑
i∈I τi = 0, agents choose consumption and asset purchases to maximize

expected utility, given her budget constraint:

(5.1) max
{ci(s),ai(s)}

Es {ui [ci (s)]}

(5.2) s.t :


ci (s) = yi (s) + ai (s) for all s ∈ S

ai (s) = 0 for all s ∈ S : ζi = 0∑
s∈S ai (s) r̂ (s) ≤ τi.

As we did when defining the Lagrange multipliers for the planning problem, we normalize the
price function as r (s) = r̂ (s) /P (s), changing the budget constraint in the consumer problem as

(5.3) Es [ai (s) r (s)] :=
∑
s∈S

ai (s) r (s) P (s) ≤ τi.

A Walrasian Equilibrium with transfers τ is a triple (c, a, r) =({ci (s) , ai (s)}i∈I,s∈S , {r (s)}s∈S)
such that

• {ci (s) , ai (s)}s∈S solves (5.1) with budget constraint (5.3) for all i ∈ I, given (normalized)
prices r (s) = r̂ (s) /P (s) and τ = (τi)i∈I ,
• asset markets clear:

∑
i∈I ai (s) = 0 for all s ∈ S,7 and

• consumption good markets clear:
∑
i∈I ζici (s) ≤

∑
i∈I ζiyi for all s ∈ S.

In Proposition 5.1, we show a version of the First and Second Welfare Theorems for this economy,
which is an application of the classical welfare theorems to this environment (Mas-Colell et al.
(1995)). This can be qualified as a welfare theorem with “constrained efficiency,” since the constraint
that lack of market access (i.e., ζi = 0) implies autarkic consumption is interpreted as a physical
constraint (i.e., a social planner could not change an inactive agent’s consumption either).

Proposition 5.1 (Welfare Theorems). Suppose the environment exhibits market participation
inert to provision of an infinitesimal liquid asset, with ζ ⊥ y. Take a planner’s problem (3.2) with

6Formally, Aŝ (s) =
{

1 if s = ŝ

0 otherwise
is the return matrix of the AD security paying only at state ŝ.

7If ∃s̃ ∈ S : P (s̃) = 0, then we can interpret this condition as imposing the constraint that ai (s̃) = 0 for all i ∈ I
(i.e., agents cannot trade in probability zero events).
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Pareto weights λ ∈ ∆n, and an optimizing allocation c = (ci (s))i∈I,s∈S, with normalized Lagrange
multipliers q (s) (as defined in (A.1)). Then, (c, r) is a Walrasian Equilibrium with transfers τ ,
where r (s) = q (s) for all s ∈ S and τi = Es {[ci − yi (s)] q (s)}. On the other hand, if (c, r) is such
an equilibrium with transfers τ , then there exist Pareto weights λ ∈ ∆n such that c is the allocation
solving planner’s problem (3.2) (where we again have q(s) = r (s)).

We provide a proof in Online Appendix E. An important Corollary of Proposition 5.1 (and
most classical proofs of Second Welfare Theorems in various settings) is that it gives us an explicit
formulation for the equilibrium Arrow Debreu security prices at the implementing equilibrium,
which coincide with the shadow values q (s) at the resource constraint at each state s.8 Since we
can interpret this economy as one with complete markets (once we interpret market participation
shocks as consumption sets shocks) r (s) P (s) is a pricing kernel, which greatly simplifies the pricing
of additional assets, if available to the market. More explicitly, if we add to this economy, on top
of the Arrow Debreu securities offered, an asset with return payoff function ρ (s) ∈ R, its (no
arbitrage) equilibrium price in this economy would be

Price = Es [ρ (s)× r (s)] :=
∑
s∈S

ρ (s) r (s) P (s) .

Using the results from Proposition 5.1, financial centrality can be thought as the equilibrium price
of an asset (which we dubbed personalized debt) with return payoff matrix ρi (s) = 1 if s : ζi = 1.

Proposition 5.2. Suppose y ⊥ ζ and let (c, r) be the Walrasian Equilibrium with transfers τ =
(τi)i∈I that implements the planner’s problem (3.2) optimal allocation c with Pareto weights λ ∈ ∆n.
Then

FCi =
∑
s∈S

ρi (s) r̂ (s) =
∑
s∈S

ρi (s) r (s) P (s) .

That is, financial centrality is the price of a personalized debt asset implementing Walrasian Equi-
librium with transfers.

5.2. Bargaining Foundations. We next study a foundation where agents engage in ex-ante co-
operative (Nash) bargaining. We show that there is a positive linear relationship between the
“representing Pareto weight” of an agent—the weight that would be assigned under the planner’s
problem that implements the outcome—and her financial centrality measure. Suppose agents de-
cide the social contract by bargaining ex-ante among themselves. Agents receive an expected utility
Ui = E [ui (ci (s))] in a contract. If they reject the proposed social contract, then agents get their
“disagreement point,” or autarky value, Uauti = Eyi [ui (yi)]. The social contract is the choice of a
feasible consumption allocation c (s) = {ci (s)}s=(y,ζ). If the bargaining process satisfies Pareto op-
timality, linearity in utilities, and independence of irrelevant alternatives, then there exist weights
(αi) ∈ ∆n such that the bargaining solution solves

c (s) = arg max
ĉ(s)

∏
i∈I
{Es {ζiui [ĉ (s)] + (1− ζi)ui (yi)} − Eyi [ui (yi)]}αi

8If the environment had endogenous participation where agents choose whether or not to trade, as in Section C.2,
then there typically will be pecuniary externalities from this choice. This will not be reflected in the equilibrium
prices. A richer model where agents could pay others for their market participation (e.g., a Lindahl equilibrium)
would restore efficiency.
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subject to
∑
i ζiĉi (s) ≤

∑
i ζiyi. This is equivalent to solving the following program:

max
c(s)

∑
i∈I

αi ln {Esζi [ui (ci (s))− ui (yi)]}

s.t :
∑
i∈I

ζici (s) ≤
∑
i∈I

ζiyi for all (y, ζ) .

Holding everything else fixed, agents with higher financial centrality have also higher Pareto weights.
If agents bargain over risk sharing contracts, holding autarky as a threat point of the negotiation,
then agents with higher centrality should have higher portions of aggregate income.

Proposition 5.3. Suppose ui (c) = −r−1
i exp (−ric) and y ∼ N (µ,Σ). Then, the Pareto weights

associated with the asymmetric Nash bargaining solution with bargaining weights α ∈ ∆n satisfy
the following fix point equations:

(5.4) λi = αiri + FCi (λ)

P (ζi = 1) · exp
(
−riµi + r2

i
2 σ

2
i

) for all i.

In particular, for the symmetric Nash bargaining solution (αi = 1) with homogeneous preferences
and i.i.d. income, we show that the representing Pareto weights need not uniform (λi 6= 1/n) but
rather satisfy

(5.5) ln (λi) = κ+ ln [r + FCi (λ)]− ln {P (ζi = 1)}

so the heterogeneity in the market participation process has a bite. In Appendix (A.3.2), we study
two alternative foundations: an alternative asymmetric Kalai-Smorodinsky solution, which delivers
a similar relationship between centrality and bargaining weight (Proposition A.2) and a Walrasian
General Equilibrium model (Online Appendix E).

Example 5.1 (Empirics; Village Risk Sharing). Next, we study the empirical content of our
theory. To do this, we look at the Townsend Thai village data over 15 years. This data follows 338
households across 16 villages where we have detailed data on consumption, income, and transactions
across villagers (Townsend, 2016). In particular, in this setting we have variation in the number of
transactions per time period. A complete empirical analysis of the patterns of risk sharing in these
villages, motivated by and based on the framework outlined in this paper, can be found in (Kinnan
et al., 2019).

Our theory has a unique prediction. Those that provide more value—higher measures of financial
centrality—are exactly those that are in the market when the market is thin (in a generalized sense
including few active traders and greater per-trader-volatility in income). And those who are more
central in this sense claim a greater share of the surplus, in this case higher average consumption.

We proceed in two steps. First, develop a measure that reflects FCi. As shown above, if
Pareto weights are determined by bargaining, then a more financially central individual i has a
higher Pareto weight λi. Though we do not observe financial centrality, we can use observations on
consumption in panel data to obtain an estimate of a function for each agent i which is monotonically
increasing in the Pareto weight λi. We can estimate a regression of consumption on household
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Table 1. Do Pareto weights correlate with measures of market thinness when the
agent is active?

(1) (2) (3)
VARIABLES αi αi αi

ρζi 0.095 0.112
(0.041) (0.045)

ρσi 0.103 0.118
(0.050) (0.051)

Observations 338 338 338
Robust standard errors in parenthe-

ses. The dependent variable is a (mean
zero, standardized) Pareto weight es-
timate of a given household, obtained
from using the vectors of household
fixed effects from a regression of con-
sumption on household income. Regres-
sors are each standardized as well.

income, using only active periods

civt = αi + βyivt + δtv + εivt

where t is time, αi is a household fixed-effect, and δvt is a village-by-time fixed-effect. Under CARA
utility the αi is a monotone function of Pareto weights λi.

We also know from our theory the crucial component in our financial centrality measure is
market thinness. So we compute measures of market thinness for each household. We can observe
the number of active agents in a given village in a given period as well as the volatility due to the
composition of active agents. As such, we define

ρζi := covt
(
ζit,

1
nvt

)
and ρσi := covt (ζit, σ̄t) ,

where nvt is the number of active participants in period t in a village v, computed from the transfers
data as mentioned, and where σ̄2

t := 1
nζt

∑
i,j ζitζjtσ̂i,j,t is an estimate of the volatility at period t,

where σ̂i,j,t is the measured covariance between households i and j’s income.
To study the prediction of the theory, we study a regression

αi = β0 + β1ρ
ζ
i + β2ρ

σ
i + ui.

Our theory suggests that β1 > 0 and β2 > 0 as being present in generalized thin markets corresponds
to higher endogenously determined Pareto weight and therefore higher average consumption. This
is an observational claim, but it is not mechanical: that those who are present exactly when the
market is thin tend to receive a greater mean consumption, is consistent with our model.

Table 1 presents the results. Columns 1-2 include each measure of market thinness when the agent
enters one-by-one and column 3 includes them together. We see a one-standard deviation increase in
the tendency to enter when the market is thin in numbers is associated with a corresponding 0.095
standard deviation increase in mean consumption (column 1, p = 0.021). Similarly, a one-standard
deviation increase in the tendency to enter when the market is thin in the sense of high volatility
is associated with a corresponding 0.103 standard deviation increase in the mean consumption
(column 2, p = 0.04). These estimates are stable to being jointly included (column 3).
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Taken together, the results are consistent with a story where agents have determined Pareto
weights through a bargaining process, and those who have higher weights and therefore higher
financial centrality are precisely those who tend to be active traders when the market is thin either
in terms of numbers of individuals or volatility. This observation is new to the literature and, to
our knowledge, unique to our model.

6. Extensions to Endogenous Entry and Large Transfers

6.1. Choosing to Enter the Market. While we have focused on environments that were inert
to an infinitesimal liquidity injection in the above, we show an example where there is a shift in
the participation decision itself. We provide several other examples of endogenous participation,
showing when this is responsive or inert to liquidity injection, in Online Appendix C. In this
example, the consumption allocation c = (ci (s))i∈I,s∈S is common knowledge, but agents have
random market participation costs, which are privately observed. Formally, agents observe a cost
ki ∈ Ki, and costs are jointly distributed according to distribution G (k) with full support in an
interval in Rn, and are independent of the income shocks y.

Given the consumption allocation, an equilibrium market participation is a set of mappings
ζ∗i : Ki → {0, 1} such that if ζ∗i (ki) = 1 then

(6.1) Ey,k
{
ui
[
ci
(
y, ζ∗−i (k−i)

)]
− ui (yi) | ki

}
≥ ki.

That is, it is a Bayesian Nash Equilibrium in an incomplete information game where agents’s
strategies are their market participation decisions.

In this example, we assume ui = u for all i, λi = 1/n for all n, and yi ∼ N
(
µ, σ2) i.i.d., so that

ci = yζ whenever ζi = 1. We also assume that the conditional distribution of k−i | ki is FOSD
increasing in ki.9

Under these assumptions, we show that

(1) ζi (ki) = 0 for all ki is the lowest participation equilibrium.
(2) There exist thresholds k =

(
ki
)
i∈I

and an equilibrium ζ (k) such that ζi (ki) = 1 if and
only if ki ≤ ki. Moreover, ζi (ki) ≥ ζ∗i (ki) for all k ∈ Kn, all agents i ∈ I, and for any
other BNE participation strategy. In what follows, we characterize the market participation
equilibrium with highest market participation (i.e., highest nζ) for all realizations of private
costs ζ (k).

Define k∗m as the threshold if agents had complete information about the market size: k∗m :=
Ey {u (ym)− u (yi)} ≥ 0.10 Also, form ≤ n define π

(
m, k

)
:= P

(∑
i ζi (ki) = m

)
as the probability

distribution over market size (m) given the threshold policies (k̄), which can be written as a function
of the thresholds k as π

(
m, k

)
=
∑
J :|J |=m P

(
kj ≤ kj∀j ∈ J and kh > kh∀h /∈ J

)
. Equation (6.1)

9This is satisfied, for example, if costs are independent, ki ∼ Gi (ki) for all i. It is also satisfied if ki = K + ξi, where
K is a common random variable, and ξi ∼i.i.d F (ξ) with zero mean.
10Because u (·) is strictly increasing and concave, and ym is a mean preserving spread of yz with z ≤ m (since
ym ∼ N

(
µ, σ2/m

)
).
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can be used to obtain a fix point equation for the thresholds k :

kj = Ψj

(
k, εi

)
:=

∑
m≤n

Ey
{
u

(
ym + ζi (ki)

εi
m

)
− u (yi)

}
× π

(
m, k | kj

)
where π

(
m, k | kj

)
= P

(∑
i ζi (ki) = m | kj

)
. Finally, let Jk =

[
∂Ψi
∂kj

]
i,j∈I

be the Jacobian (with
respect to k) of the above vector Ψ, and define the matrix of distributed cross-centralities Fn×n as

Fij = Es

[
ζiζj

q (s)
nζ
| kj

]
where ζj = ζj (kj) .

Intuitively, when agent i gets ε extra unit of income, then in the optimal equilibrium allocation,
if agent j is also present, j obtains ε/n. This extra income increases expected utility by q (s).
Proposition 6.1 shows the decomposition of centrality into risk sharing and participation effects.

Proposition 6.1. Under the above assumptions,

FCi = Es [ζiq (s)] + Λ′ (I − Jk)−1 · F(i) = Es [ζiq (s)] + Λ′
∑
t∈N

[Jk]t · F(i)

where F(i) = (Fi1,Fi2, . . .Fin) and Λ = (Λj)j∈I where Λj :=
∑n
m=1mk

∗
m
∂π(m,k)
∂kj

≥ 0.

The risk-sharing component is as usual. The participation effect can be interpreted as follows.
Consider a term

[
Jtk
]
ij . If t = 1, this directly encodes the change in the participation of i when j’s

threshold cost of entry changes infinitesimally. For higher t, as is usual for such positive matrices,
this encodes a (weighted) chain of terms. If t = 2, it is easy to see it now sums over every chain,∑
l
∂Ψi
∂kl

∂Ψl
∂kj

, which captures both the change in the participation decision of i due to the increase
in cost for l as well as change in participation for l due to an increase in cost for j. This can
be thought of as a chain rule, or the indirect effect of distance 2 by increasing the equilibrium
threshold cost for j. Now more generally for higher orders of t, this encodes larger chains. This is
typical of numerous notions of network centralities in the literature and analogously our (weighted)
endogenous network here is Jk.

The more subtle feature here is that not only do chains of participation effects matter, but also
these are weighted by the very effect of the liquid asset itself. A typical eigenvector-like centrality
for adjacency matrix G would be of the form x ∝

∑
t (θG)t · 1 where θ < 1 and xi is the centrality.

Here all paths from i to js of t lengths are counted and added up. In our case, we do not add up
the terms with equal weight, but rather weight by ∂Ψj

∂εi
—the change in j’s participation decision

due to the injection itself. (In the proof we show that the above term is equivalent, Fij = ∂Ψj
∂εi

.) So
returning to an overall term, we can write the participation effect as

∑
j

Λj
∂Ψj

∂εi

∑
t∈N

[Jk]t

ji

.

The interpretation is clear. It takes the weighted direct and indirect effects of the marginal change
in participation due to a cost increase but then weights the effect of i on every other agent in
the network by how much their participation is also directly affected by the asset provision itself,
holding the entry cost fixed.
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To understand the intuition, consider the following simplified case. Imagine that i was the only
agent with endogenous entry (i.e., all other agents that may have market access when i enters have
costs that are negative so entry is free or above the threshold for entry so they never enter). In this
case, numerous terms drop from the above, and so the participation effect of financial centrality
immediately becomes

Λi · Es

{
ζiq (s) 1

nζ

}
.

This is a monotone function of the risk-sharing effect of financial centrality meaning the same agents
who are financially central without the endogenous effect will be financially central with such an
effect. Of course, the more general case involves the network of effects characterized above.

6.2. Large Transfers. We now consider a thought experiment where a larger transfer T can be
distributed to a subset of all agents and define financial centrality in this large-transfer setting. We
show that the intuition studied in the small-transfer case holds true for non-marginal transfers.

We consider increasing the endowment of a subset of agents J ⊆ I across all values of income,
whenever they can trade, by a total amount T > 0 to finance this increase. The policy consists
of offering a “credit line” but really a transfer, contingent only on participation and without any
repayment obligations. Then t = (tj)j∈J ≥ 0 changes the income process for agent j ∈ J to
ŷj (s) = yj + ζjtj for all s = (ζ, y) with

∑
tj = T . This is a commitment to a named trader j

without knowing what situation the trader will be in.
If V (t) is the maximization problem’s value function, with income process yj = ŷj , the planner

would choose t = (tj)j∈J ≥ 0 to solve

(6.2) max
t∈R|J|+

V (t) s.t
∑
j∈J

tj ≤ T.

Note that V (t) here is a general value function, which could come from the corresponding solution V
of program (3.2), but this not required. This allows us to define financial centrality more generally.

Definition 6.1. We define financial centrality for total transfers T of agent i ∈ I, where t? is a
maximizer of program (3.2), as

FCTi := Vi (t∗) = ∂V

∂ti
|t=t∗ .

The financial centrality for total transfers T is defined relative to a hypothetical transfer of T
and computes the relative gain in the value due to rewarding agent i with a transfer ti for any
maximizing transfer vector t∗ such that

∑
j t
∗
j = T .11

Any allocation that maximizes the objective function must, when giving a transfer to a set of
agents K, not benefit at the margin by providing transfers to a set of agents J\K. We show that
in fact there will be a cutoff where the (endogenously determined) set of agents who are provided
non-zero transfer will be financially more central than all other agents who receive no transfers
in equilibrium. Further, if the total to be transferred is small enough, then the unique solution

11Program (6.2) will typically have a unique solution in our applications. However, if there is more than one
maximizing transfer scheme, the choice of where to evaluate V for the definition of centrality is irrelevant, as long as
V (T ) is differentiable (see Corollary 5 in Milgrom and Segal (2002)).
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is to provide the entirety of T to a single agent rather than a subset of agents, and in this case
FCTi ≈ ∂V

∂ti
|t=0 and the agent has the highest financial centrality, which corresponds to the leading

case we have been studying earlier in the paper. When we evaluate centrality at T = 0 (and hence
t∗ = 0 is the only possible solution) we write (with some abuse of notation) simply FCT=0

i = FCi.
Next, we consider the situation where the transfers T > 0 are non-trivial in size but in the case

of the CARA preferences with risk aversion parameter r, normally distributed endowments with
variance covariance matrix (σij), and heterogenous Pareto weights λi. We show that if t∗i > 0 then
we can calculate the financial centrality for transfer T for agent i as

FCTi =
∑

ζ∈{0,1}n
P (ζ)λζ exp (−rµ) exp

(
r2 σ

2
ζ

2nζ

)
︸ ︷︷ ︸

:=h(ζ)

exp (−rtζ) .

Here λζ = exp
[
n−1
ζ

∑
j ζj ln (λj)

]
is the simple geometric average of Pareto weights at market ζ,

and tζ = n−1
ζ

∑
ζjtj the average liquidity made available at market ζ. We can see that the average

income, volatility, and market size when i is present all contribute to financial centrality in the
usual way.

For any set of agents A ⊆ I, let ζA ∈ {0, 1}n denote the market where only agents belonging to
A have market access.

Proposition 6.2. Take the CARA-normal model with ζ ⊥ y and homogeneous preferences (ri = r for all i)
and let t∗ ∈ Rn+ be a solution to (6.2) with J = I.

(1) If t∗i > 0 then we can calculate the financial centrality for transfer T for agent i as

FCTi =
∑

ζ∈{0,1}n
P (ζ)λζ exp (−rµ) exp

(
r2 σ

2
ζ

2nζ

)
exp (−rtζ) .

(2) If i, j are such that such that t∗i > 0 and

(6.3) P
(
ζ{i,A}

)
h
(
ζ{i,A}

)
≥ P

(
ζ{j,A}

)
h
(
ζ{j,A}

)
for all A ⊆ I\ {i, j}

then t∗i ≥ t∗j . If there exist some A ⊆ I\ {i, j} for which (6.3) is strict, then t∗i > t∗j .

This says that if i is more central than j in a strong sense, then i will receive higher transfers than
j. Of course, the condition for Proposition 6.3, part 2 implies that FCi ≥ FCj (i.e., around T = 0),
since FCi =

∑
ζ P (ζ)h (ζ), but this is a stronger requirement. However, this robustly captures the

intuition and shows that even for non-marginal transfers, those who tend to be in components (or
markets) that are smaller, more volatile, more important, or require more insurance are indeed
deemed to be more central, even if the exact formulation is not analytically tractable.

Further, returning to endogenous participation, it is worth noting why our notion of centrality
is defined with respect to injections happening ex-ante, before incomes are realized. Namely, our
notion solves potential incentive problems. First, if income is privately observed, and liquidity is
based on reported values, then agents may have incentives to report low income values in order to
receive higher liquidity injections. Second, consider the case of moral hazard in income production.
If income has to be produced (by investing or applying effort) and agents know that they will
receive insurance from the planner, this dampens incentives for production, as in the standard
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moral hazard problem. Though making liquidity provision non-contingent may not be the optimal
mechanism, it is robust in its ability to resolve the potential incentive problems in more general
environments without having to spell out all the details of the model.

7. Discussion

In a number of economic environments, agents share risk, but there is heterogeneity in who
participates and is able to exchange directly or indirectly with others. This is true of financial
markets with search frictions, matching with limited and stochastic market participation, and in
some monetary models. This is observed in risk-sharing village networks, among other settings. A
common, standard model which we extend to a stochastic financial network (the distribution over
components of the subgraphs induced by exogenous or endogenous participation shocks) is used
to address the question of how one measures an agent’s importance in such settings. We define
the financial centrality of an agent as the marginal social value of providing a small liquid asset
to that agent. So, we characterize financial centrality as measuring the price of a personalized
bond: i.e., an asset that pays whenever agent i is able to trade, and anyone can trade in that asset.
Therefore, centrality can be measured using classical asset pricing techniques, once the equilibrium
pricing kernel is estimated. We show that the most valued agents are not only those who trade
often, but trade when there are few traders, when income risk is high, when income shocks are
positively correlated, when attitudes toward risk are more sensitive in the aggregate, when there
are distressed institutions, and when there are tail risks. From a financial networks perspective, we
provide a new contribution to the literature: an agent is more central, holding fixed frequency of
trade, the fewer links or transaction partners they have.

Additionally, we look at a different decentralized environment, where agents engage in ex-ante
cooperative bargaining, which determines the Pareto weights. We show the resulting weights depend
on exactly the same features as financial centrality. This allows us to study financial centrality in
the data without observing it directly. In a simple empirical example, we turn to a setting, where
we have the requisite data: rural Thai villages. We provide observational evidence from village risk-
sharing network data, consistent with our model, that the agents that receive the greatest share
of the pie are indeed those who are not simply well-connected, but are active precisely when the
market is otherwise thin in number of participants or consisting of participants with high ex-ante
volatility of income.

The framework extends to both endogenous participation models, as in private information,
moral hazard, or team production models where financial centrality may or may not have an
extra component. In some contexts, endogenous participation has an identical form as exogenous
participation; the liquidity does not generate a change in the participation distribution per se, so
formally the participation decision can be thought of as exogenous. In other cases, endogenous
participation leads to a change in the composition of participants in equilibrium due to the asset.

Finally, normative analysis is straightforward with the intuitions from the small asset case carry-
ing through exactly—in the case of inertness—to the case with large transfers by the policymaker
to potentially a set of agents. Moral hazard concerns rationalize why we have taken an ex-ante
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perspective. The provision of liquidity and its characterization can be generalized to environments
in which the policymaker has limited controls.
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Appendix A. Proofs

A.1. Financial Centrality as Value of Marginal of Liquidity Injection.

Proof of Proposition 3.1. Since V (t) is concave, this program is convex, and satisfies Slater’s
condition if T > 0, and hence the Kuhn-Tucker conditions of this program are both necessary
and sufficient. The Lagrangian of program (6.2) is L (t, η, ν) = V (t) + η

(
T −

∑
j∈J tj

)
+ νjtj .

Kuhn-tucker conditions are

(1) Vj (t) = η − νj for all j ∈ J , where Vj = ∂V/∂tj

(2) νjtj = 0 for all j ∈ J
(3) νj ≥ 0 for all j ∈ J
(4) η

(
T −

∑
j∈J tj

)
= 0 and η ≥ 0

If at an optimum t∗ we have that t∗i > 0 then Vi (t∗) = ν. If Vj (t∗) < Vi (t∗) = ν then we must have

νj = Vi (t∗)− Vj (t∗) > 0

implying that t∗j = 0.
To show (2), Propose the following solution: t∗i = T, t∗j = 0 for all j 6= i, η = Vi (t∗) and

νj = η − Vj (t∗). Since V is differentiable, its partial derivatives are continuous around t = 0.
Therefore, ∃T̂J > 0 such that for all t ∈ τ =

{
t :
∑
j∈J tj < T̂J and tj ≥ 0 for all j ∈ J

}
we have

Vi (t) ≥ Vj (t) for all j ∈ J ∼ {i} (since FCi ≥ FCj). Therefore, if T < T̂ , a solution t∗ ∈ τ , and
therefore we have Vi (t∗) > Vj (t∗) for all j, and hence νj = η− Vj (t∗) = Vi (t∗)− Vj (t∗) > 0; i.e. t∗

satisfies the Kuhn-Tucker conditions. To prove uniqueness, suppose there exists another solution
t̂ :

∑
j∈J t̂j < T̂ and ∃k 6= i with t̂k > 0. If that was the case, then η = Vk (t). But because∑

j∈J t̂j < T̂ we also have that Vi
(
t̂
)
> Vk

(
t̂
)
. Therefore, Vi

(
t̂
)

+ νi ≥ Vi
(
t̂
)
> Vj

(
t̂
)

= η,
violating condition (1). Therefore, the only solution to (6.2) is t = t∗. �

A.2. Characterizing Financial Centrality. In what follows, we will explore the properties of
which agents are more financially central as a function of fundamentals such as propensity to be
an active trader, composition of those who are active when the agent is active, variances and
covariances of incomes of active traders, risk preferences, and so on.

We next develop a useful formulation of financial centrality in terms of the multipliers of the
maximization problem in (3.2).

Let q̂ (y, ζ) be the Lagrange multiplier for the first condition and define an auxiliary multiplier
vector

(A.1) q (y, ζ) : q̂ (y, ζ) := q (y, ζ) P (y, ζ) ,

and let γi (s) be the corresponding Lagrange multiplier for the non negativity constraint ci ≥ 0.
The Lagrangian for (3.2) is then

(A.2) L = Es

{∑
i∈I

λiui [ci (s)] + q (s) ζi [yi − ci (s)] + γi (s) ci (s)
}
.



LIQUIDITY, FINANCIAL CENTRALITY, AND THE VALUE OF KEY PLAYERS 32

In the baseline model, we assume market participation is independent of income draws. In this
case, financial centrality can be expressed using the envelope theorem on program (3.2).

Lemma A.1. Suppose the environment is inert to infinitesimal liquidity injection, and let q (s)
and γi (s) be the multipliers of Lagrangian (A.2) for program (3.2)Then

(A.3) FCi = Es {ζiq (s)} .

Proof. We use the classical envelope theorem on a variation of program (3.2), changing the income
of agent i to ŷi = yi + ζiεi. Then, the envelope theorem implies

∂V

∂εi
|ε=0= Es

[
ζi
∂L
∂yi
× ∂yi
∂εi

]
= Es {ζiq (s)} .

proving the desired result. �

The multiplier q (s) is, of course, the marginal value of consumption, at the (constrained) efficient
allocation ci (·). As we will see below, when defining a Walrasian equilibrium in an Arrow Debreu
economy defined on this environment, q (s) will correspond to the equilibrium price of the Arrow
Debreu security that pays only at state s. As such, equation (A.3) is effectively the price of a
fictitious asset that pays 1 consumption unit whenever ζi = 1, using q (s) as its pricing kernel.
Next, we can consider the case where the participation distribution is responsive to infinitesimal
liquidity injection. A key feature in responsive settings is that participation and income become
correlated.

Proof of Proposition 4.1. For simplicity of exposition, assume a finite state space (i.e., y is a
discrete random variable), so the Lagrangian is

L =
∑
y∈Y

∑
ζ∈{0,1}n

∑
j∈I

λjuj (cj) + q̂ (y, ζ)
∑
j∈I

ζj (yj − cj)

P (ζ | y) P (y) .

Using the envelope theorem, we get that

FCi = ∂L
∂yi

=
∑
y∈Y

∑
ζ∈{0,1}n

ζiq̂ (y, ζ) P (ζ | y) P (y)

+
∑
y∈Y

∑
ζ∈{0,1}n

∑
j∈I

λjuj (cj) + q̂ (y, ζ)
∑
j∈I

ζj (yj − cj)

 ∂P (ζ | yi)
∂yi

P (y)

and using the facts that q (y, ζ) = q̂ (y, ζ) /P (y, ζ) and complementary slackness implies

q̂ (y, ζ)
∑
i∈V

ζi (yi − ci) = 0

for all (y, ζ). We can simplify this expression as

FCi = Ey,ζ {ζiq (y, ζ)}+ Ey,ζ


∑
j∈I

λjuj (cj)
∂P (ζ | yi)

∂yi

1
P (ζ | yi)︸ ︷︷ ︸

:=Si(ζ|yi)
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proving the desired result. �

Proof of Proposition 4.2. The first order conditions of program (3.2) with Lagrangian defined
in (A.2) with respect to ci (s) whenever ζi = 1 is λiu′i [ci (s)] = q (s) (without taking into account
the non-negativity constraint over consumption). Therefore, if λi = λj = 1/n for all i, j ∈ I and
ui = u for all i, we then get that if ζi = ζj = 1 then ci (s) = cj (s) (i.e., all agents participating in the
market have equal consumption). Therefore, using the resource constraint, we obtain ci (s) = y (s)
whenever ζi = 1, and obviously ci (s) = yi otherwise. The first order condition also implies then
that q (s) = u′ [y (s)].

To obtain the approximation, we first make a second order Taylor approximation g (y) := u′ (y)
around y = E (y) = µ:

u′ (y) ≈ u′ (µ) + u′′ (µ) (y − µ) + u′′′ (µ)
2 (y − µ)2

and then taking expectations, we have

E
[
u′ (y (s)) | ζ

]
≈ u′ (µ)+u′′ (µ)E (y − µ | ζ)+ 1

2u
′′′ (µ)E

[
(y − µ)2 | ζ

]
= u′ (µ)+ 1

2u
′′′ (µ)σ2/n (ζ) ,

using the facts that E (y) = µ and that E (y − µ)2 = σ2/n (ζ) if income draws are i.i.d. Reorganizing
this expression, we get the desired result. �

The above result can be considerably generalized. Let us consider an extension that naturally
correlates participation with income and allows for considerable heterogeneity in incomes, Pareto
weights, tastes for risk, and so on. We suppose CARA utility and a jointly normal income distribu-
tion with heterogeneous mean, variance, and covarying income draws. Assume that agents observe
shocks to income volatility and expected income to certain agents. To begin with, there is an aggre-
gate (fundamental) shock z ∈ Z with some distribution G (z). This fundamental shock affects pref-
erences expected income µ (z), income variance Σ (z), preferences ui (c, z) = − 1

ri(z) exp (−ri (z) c),
and even the planner’s preferences λ (z).

Formally, we assume y | z ∼ N (µ (z) ,Σ (z)) and ζ ∼ F (ζ | z), and are such that (y | z) ⊥ (ζ | z)
This is without loss of generality and nests the case where participation is endogenous prior to
observing the realized income, but after observing the realized shock z. With these assumptions,
income is Gaussian and (y | z) ⊥ (ζ | z). The conditional independence will buy us a simple
characterization.

Let µζ := 1
nζ

∑
i ζiµi be the average expected income of those trading, σ2

ζ := 1
nζ

∑
i,j ζiζjσi,j be

the average volatility, rζ :=
(

1
nζ

∑
i:ζi=1

1
ri

)−1
be the mean of the risk parameter of those trading,

and λ̄ζ :=
(∏

i:ζi=1 λ
rζ/ri
i

) 1
nζ be the risk-weighted geometric mean of Pareto weights.

Proposition A.1. Under the above assumptions, we have that

E [q (y, ζ) | z, ζ] = exp
[
−rζ (z)µζ (z)

]
× λζ (z)× exp

[
r2
ζ (z)
2 ×

σ2
ζ (z)
nζ

]
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so financial centrality is given by

FCi = Ez,ζ

{
ζi × exp

[
−rζ (z)µζ (z)

]
× λζ (z)× exp

[
r2
ζ (z)
2 ×

σ2
ζ (z)
nζ

]}

where the market averages
(
rζ , µζ , λζ , σ

2
ζ

)
are functions of market fundamentals z ∈ Z.

Proof of Proposition A.1. Since shock z ∼ G (z) is realized after the liquidity injection is real-
ized, the Lagrangian used by the planner is

L = Ez

[
Es

{∑
i∈I

λi (z)ui [ci (s)] + q (s) ζi [yi − ci (s)] | z
}]

hence
L = Ez,s

{∑
i∈I

λi (z)ui [ci (s, z) , z] + q (s, z) ζi [yi − ci (s, z)]
}

So FOCs are
λi (z) ∂ui

∂c
[ci (s, z) , z] = q (s, z)

and in the CARA case,
λi (z) exp (−ri (z) ci (s, z)) = q (s, z)

and, using the same results as before, we see than given z, we have

q (s, z) = λ̂ζ (z) exp
(
−rζ (z) yζ

)
where λ̂ζ (z) := exp

[
1
nζ

∑
ζj
rζ
rj

ln (λj (z))
]
and rζ (z) :=

(
1
nζ

∑
ζj

1
rj(z)

)−1
. Now, because we know

that y | z ∼ N (µ (z) ,Σ (z)) we can also see that

Es [ζiq (s, z) | z] = Es
[
ζiλ̂ζ (z) exp

(
−rζ (z) yζ

)
| z
]

and using the independence assumptions we then know that

Es [ζiq (s, z) | z] = Es (ζi | z)× exp
[
−rζ (z)µζ (z)

]
× λζ (z)× exp

[
r2
ζ (z)
2 ×

σ2
ζ (z)
nζ

]
integrating with respect to z gives us the desired result. �

A.3. Bargaining Foundations.

A.3.1. Nash Bargaining.

Proof of Proposition 5.3. From the first order conditions of the planner’s problem we have

λi exp (−rici) = λζ exp (−rζy)

so
− 1
ri

exp (−rici) = − λζ
riλi

exp (−rζy) .
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Hence

Es [ζiui (ci (s))] = − 1
riλi

Es
[
ζiλζ exp (−rζy)

]
= − 1

riλi
Eζ

[
ζiλζ exp

(
−rζµ+

r2
ζ

2nζ
σ2
ζ

)]

= − 1
riλi

FCi.

Moreover

Es [ζiui (yi)] = − 1
ri
Es [exp (−riyi)] = − 1

ri
Eζ

[
ζi exp

(
−riµi + r2

i

2 σ
2
i

)]

= − 1
ri

P (ζi = 1)︸ ︷︷ ︸
:=pi

exp
(
−riµi + r2

i

2 σ
2
i

)
.

This means
Es {ζi [ui (ci (s))− ui (yi)]} = 1

ri
pi exp

(
−rµi + r2

i

2 σ
2
)
− 1
riλi

FCi

and so
λi = αiri

λi
λi
pi exp

(
−riµi + r2

i
2 σ

2
i

)
− 1

λi
FCi

if and only if

λi = λiαiri

λipi exp
(
−riµi + r2

i
2 σ

2
i

)
− FCi

⇐⇒ λipi exp
(
−riµi + r2

i

2 σ
2
i

)
− FCi = αiri

if and only if
λi = αiri + FCi (λ)

pi exp
(
−riµi + r2

i
2 σ

2
i

)
as we wanted to show. �

A.3.2. Kalai-Smorodinsky Bargaining. The second most used bargaining solution in the literature
is the Kalai-Smorodinsky solution. It also gives closed form solutions to Pareto weights and the
weights are expressed as a function of fundamentals of the environment, rather than a fixed point
equation.

The most important parameter in the bliss point. The bliss point for agent i, U i, is defined as
the utility they would achieve if they consumed all the available income in the market in every
state where they can trade and only her own income otherwise:

U i := Eζ,y

ζiui
∑

j

ζjyj

+ (1− ζi)ui (yi)


and U =

(
U1, U2, . . . , Un

)
. Likewise, the disagreement point U i is the value of autarky in this

environment for each agent
U i := Eyi [ui (yi)]
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and U := (U1, U2, . . . , Un). The Kalai-Smorodinsky solution consists on finding the linear combi-
nation of U and the U that lies on the Pareto frontier of the utility possibility set; i.e, find α ∈ [0, 1]
such that αU + (1− α)U ∈ P (U), and the solution is U∗ = αU + (1− α)U . Since U > U , the
Kalai-Smorodinsky solution here would be

max
α∈[0,1],{ci(y,ζ)}i∈I

α

subject to Ey,ζ [ζiui (ci (y, ζ)) + (1− ζi)ui (yi)] ≥ αU i + (1− α)U i for all i∑
ζici (y, ζ) ≤

∑
ζiyi for all (ζ, y) .

One of the most attractive properties of the Kalai-Smorodinsky solution is that the Pareto
weights derived from it have a closed form formula and is not a fixed point equation (as in the Nash
Bargaining solution case).

Proposition A.2. If the risk sharing contract is the Kalai-Smorodinsky solution over the utility
possibility set, then the Pareto weights associated with the solution are

λi = 1
Es {ζi [ui (Y (s))− ui (yi)]}

where Y (s) =
∑
j ζjyj is the aggregate income in state s = (y, ζ). If ui (c) = −r−1

i exp (−ric) and
y ∼ N (µ,Σ), then

λi = β

pi × Eζ
{

exp
(
−rµ+ σ2

2

)
− exp

[
nζ
(
−rµ+ σ2

2

)]
| ζi = 1

}
where β = r/

(
−rµ+ σ2/2

)
.

The following corollary is an immediate consequence.

Corollary A.1. In the CARA-Normal model, with homogeneous preferences and i.i.d. income
shocks, if µ > r

2σ
2, then Lagrange multipliers are decreasing (in the FOSD sense) in market size.

Unlike Nash bargaining, Pareto weights in this environment have a closed form solution, so
comparative statics are easier to interpret, and the comparative statics are the same as the one
suggested by the Nash Bargaining fixed point equations. The most important feature, of course,
is that the elements determining λ are the same as those that determine our measure of financial
centrality. This correspondence allows us to operationalize financial centrality in empirical analysis.

Proof of Proposition A.2. The Lagrangian is

L = α+
∑

µi
{
Ey,ζ [ζiui (ci) + (1− ζi)ui (yi)]− αU i − (1− α)U i

}
+
∑
ζ,y

q (y, ζ) ζi (yi − ci) P (y, ζ)

with multipliers (µi)i=1:n and (q (y, ζ) P (y, ζ))y,ζ . First order conditions are

∂L
∂α

= 1− µi
(
U i − U i

)
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since α ∈ (0, 1) (the bliss point cannot be feasible) then, to get an interior solution, we must have
∂L
∂α = 0 ⇐⇒ µi = 1/

(
U i − U i

)
. The first order conditions with respect to consumption are

∂L
∂ci (y, ζ) |ζi=1= 0 ⇐⇒ µiu

′
i (ci) P (y, ζ) = q (y, ζ) P (y, ζ)

therefore, in the planner representation, this is equivalent to the Pareto weights being

λi = µi = 1
U i − U i

.

In the CARA-Normal model, let Y :=
∑
ζjyj . Since y ∼ N (µ,Σ), we have Y | ζ ∼ N

(∑
ζjµj ,

∑
i,j ζiζjσij

)
.

Therefore ha
Ey

[
ui

(∑
i

ζjyj

)
| ζi = 1

]
= −1

r
E [exp (−rY )] = −1

r
MY (−r)

and MY (t) = exp
(
µY t+ t2

2 σ
2
Y

)
= exp

(
−rµY + r2

2 σ
2
)

= exp
(
−r × nζµζ + r2

2
∑
σij
)
. In the i.i.d.

case, MY (t) = exp
(
−rnζµ+ r2

2 σ
2nζ

)
= exp [nζ (−rµ+ γ)] and the autarky value is Ey [u (yi)] =

−1
r Myi (−r) = exp

(
−rµ+ r2

2 σ
2
)

Therefore

U i − U i = E

ζi
ui

 ∑
j:ζj=1

yj

− ui (yi)

 = piEy,ζ

ui
 ∑
j:ζj=1

yj

− ui (yi) | ζi = 1


= pi ×

{
exp

[
nζ

(
−rµ+ r2

2 σ
2
)]
− exp

(
−rµ+ r2

2 σ
2
)}

proving the desired result. �

A.4. Endogenous Participation.

Proof of Proposition 6.1. We first need to show the existence of the equilibrium ζi (ki) such
that (a) ζi (ki) = 0 for all ki is the lowest participation equilibrium and (b) there exist thresholds
k =

(
ki
)
i∈[n]

and an equilibrium ζ (k) such that ζi (ki) = 1 ⇐⇒ ki ≤ ki , and moreover,

ζi (ki) ≥ ζ∗i (ki) for all k ∈ Kn, all agents i ∈ [n], and for any other equilibrium participation ζ∗ (k).
For this, define the incomplete information game

Γ =
{
Ai = {ζi ∈ {0, 1}} , Ui (ζ, ki) := ζiEy

{
u

(
y1+

∑
j 6=i ζj

)
− u (yi)− ki

}
+ E (u (yi))

}
.

Because yi ∼ N
(
µ, σ2) and u is increasing and concave, it is easy to show that Γ is supermodular

in ζi, ζ−i and supermodular in η = −ki (if ki were common knowledge). This, together with the
FOSD ordering assumption, makes Γ a monotone supermodular game of incomplete information
(as in Van Zandt and Vives (2007)), which ensures the existence of monotone BNE ζ, ζ such that
for any other equilibria ζ∗ (k), we have ζ

i
(ki) ≤ ζ∗i (ki) ≤ ζi (ki) for all i, ki ∈ Ki. Since ζi ∈ {0, 1},

both ζ, ζ are threshold strategies, ζi (ki) = 1 ⇐⇒ ki ≤ ki and ζ
i
(ki) = 1 ⇐⇒ ki < ki. Since

ki ≥ 0, it is easy to show that the profile where no one attends the market is a BNE of this game
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and is clearly the lowest. The highest must prescribe market participation at the threshold, which
gives us the fix point equation,

Using the implicit function theorem, we know that if det (Jk) 6= 0 then any solution to fix point
of equation k = Ψ

(
k, εi

)
satisfies that

∂k

∂εi
|εi=0=

(
∂kj
∂εi
|εi=0

)
j∈[n]

= (I − Jk)−1 × F(i)

where F(i) =
(
∂Ψj
∂εi
| k, ε = 0

)
j∈[n]

. For this, knowing that u (·) is differentiable, we have that

u (ym + ζiε/m) = u (ym) + u′ (ym) ζi
ε

m
+ u′′ (ξ)

2
ε2

m2

for some ξ ∈
[
0, εm

]
. This implies that

k∗m (ε) := Ey [u (ym + ζiε/m)− u (yi)]

Ey [u (ym)− u (yi)] + Ey

ζiu′ (ym)︸ ︷︷ ︸
=q(s)

 ε

m
+ E

[
u′′ (ξ)

2

]
ε2

m2

and therefore
∂k∗m
∂ε
|ε=0= lim

ε→0

k∗m (ε)− k∗m
ε

= Ey
[
ζi
q (s)
m

]
.

Thus,

Fij := F(i)
j = ∂

∂ε

∑
m≤n

Ey [k∗m (ε)]× π
(
m, k | kj

) =
∑
m≤n

Ey
{
∂k∗m (ε)
∂ε

|ε=0

}
× π

(
m, k | kj

)

=
∑
m≤n

Ey
[
ζi
q (s)
m

]
π
(
m, k | kj

)
= E

[
ζiζj

q (s)
nζ
| kj

]
.

Finally, the participation effect in this model is

PE =
n∑

m=1
mk∗m

n∑
j=1

∂π
(
m, k

)
∂kj

× ∂kj
∂εi

=
n∑
j=1

∂kj
∂εi
×

 n∑
m=1

mk∗m
∂π
(
m, k

)
∂kj


︸ ︷︷ ︸

:=Λj≥0 from FOSD assumption

proving the desired result. Moreover,

∂Ψj

∂kh
|k,ε=0= ∂

∂kh

∑
m≤n

Eyk∗m × π
(
m, k | kj

) =
∑
m≤n

Eyk∗m ×
∂π
(
m, k | kh

)
∂kh

≥ 0

and ∂Ψj
∂kj
|k,ε=0= 0, again using the fact that k−h | kh FOSDs k−h | k′h whenever kh ≥ k′h. �

A.5. Large Transfers.
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Proof of Proposition 6.2. For part 1, the Lagrangian for this problem (given a vector of transfers
t∗ ∈ Rn+, and assuming ci (s) > 0 in the optimum) is

L = Es

{∑
i

λiui (ci) + q (s)
[∑

i

ζi (yi + ti − ci)
]}

The first order conditions under the assumption that y ⊥ ζ, homogeneous CARA preferences and
Gaussian income draws are the same as before, with ci = r−1 ln (λi) − r−1 ln [q (s)], but now q (s)
satisfies

r−1
n∑
i=1

ζi {ln (λi)− ln [q (s)]} =
n∑
i=1

ζi (yi + ti) ⇐⇒

ln
(
λζ
)
− ln [q (s)] = yζ + tζ ⇐⇒ q (s) = λζ exp

(
−ryζ

)
exp (−rtζ)

which then implies that Ey [q (s) | ζ] = E
[
λζ exp

(
−ryζ

)
exp (−rtζ)

]
= h (ζ) exp (−rtζ), where

h (ζ) = λζ exp
(
−rµζ

)
exp

(
r2σ2

ζ/nζ
)
. Therefore,

Vi (t) = ∂L
∂ti
|t=t∗= Es {ζiq (s)} = Eζ [ζih (ζ) exp (−rtζ)] .

For part 2, suppose, by contradiction, that t∗j > t∗i . Based on Proposition 3.1, since t∗i > 0 then
Vi (t∗) = Vj (t∗) = v∗. We can rewrite Vi (t∗) as

Vi (t∗) =
∑

A⊆I\{i,j}
P
(
ζi,A

)
h
(
ζi,A

)
exp

− r

1 + |A|
∑
k∈A

t∗k

 exp
(
− r

1 + |A| t
∗
i

)

+
∑

B⊇{i,j}
P
(
ζi,A

)
h
(
ζi,A

)
exp (−rtζ)

and analogously

Vj (t∗) =
∑

A⊆I\{i,j}
P
(
ζj,A

)
h
(
ζj,A

)
exp

− r

1 + |A|
∑
k∈A

t∗k

 exp
(
− r

1 + |A| t
∗
j

)

+
∑

B⊇{i,j}
P
(
ζi,A

)
h
(
ζi,A

)
exp (−rtζ) .

Therefore

Vj (t∗)− Vi (t∗) =
∑

A⊆I\{i,j}
exp

− r

1 + |A|
∑
k∈A

t∗k

 [P
(
ζj,A

)
h
(
ζj,A

)
exp

(
− r

1 + |A| t
∗
j

)

− P
(
ζi,A

)
h
(
ζi,A

)
exp

(
− r

1 + |A| t
∗
i

)
]

≤︸︷︷︸
(i)

∑
A⊆I\{i,j}

exp

− r

1 + |A|
∑
k∈A

t∗k

P
(
ζi,A

)
h
(
ζi,A

) [
exp

(
− r

1 + |A| t
∗
j

)
− exp

(
− r

1 + |A| t
∗
i

)]

<︸︷︷︸
(ii)

0
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using in (i) that P
(
ζi,A

)
h
(
ζi,A

)
> P

(
ζj,A

)
h
(
ζj,A

)
for all A ⊆ I\ {i, j} and in (ii) the initial

assumption that t∗j > t∗i . For the second result, if t∗i = t∗j then we should have P
(
ζi,A

)
h
(
ζi,A

)
=

P
(
ζj,A

)
h
(
ζj,A

)
for all A ⊆ I\ {i, j}. As long as one such subset exists with strict inequality, gives

the desired result that t∗i > t∗j . �
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Online Appendix: Not for Publication

Appendix B. Interpretations of Environment

B.1. Example: Production Networks. Agents running small and medium sized business have
production technologies zi = aif(xi, ki) specifying inputs xi including material inputs labor and
outputs zi, subject to idiosyncratic and aggregate shocks impacting ai. In the context of a village
economy, as one example, one can think of agents as households and think of prices of inputs (w)
and outputs (p), respectively, as exogenously determined, outside the model. Profits, or losses, in
terms of the obvious fiat money numeraire are yi = pzi − wxi are thus stochastically determined.
Specifically within a period, previously accumulated capital ki is as a given endowment. Then given
current shocks ai, a household running a firm decides on hiring labor and purchasing intermediate
inputs to produce output zi at the end of the period, subject to potential collateral constraints
on financing (not written out here). This gives maximized within-period profits, which typically
are linear in ki. Profits are thus the random incomes that correspond with the primitives yi of
the basic model. Households are risk averse with indirect utility over potentially-smoothed end-of-
period incomes, depending on mechanisms available, in the village economy.

However, participation in these networks is subject to shocks. The set of producers from whom
intermediate inputs can be purchased, and the set of purchasers for sale are each a subset of
all agents and further, subject to shocks. Links in supply chains for example, get broken. One
mechanism to hedge variable profits is trade credit, for smoothing: if low, a firm can extend the
date due for debiting the budget, negotiating an account payable, or be less generous on extending
credit on accounts receivable, or, if profits are high, the opposite.

B.2. Example: Income as Portfolio Returns. Agents have an initial random endowment e ∈
Rn, jointly distributed Gaussian: e ∼ N (µe,Σe). After observing their endowment, they have
access to a set of K ≥ 1 risky assets, with random linear returns, and a safe asset with a gross rate
of return of 1. Formally, if an agent invests wik ∈ R units in asset k, they will get a gross return of
(1 +Rk)wik, where R ∼ N (ρ,Λ) where ρ ∈ RK and Λ is a K ×K symmetric and positive definite
covariance matrix. Their endogenous income is then yi = ei + w′iR. The only point of departure
with the usual risk sharing environment is on trading opportunities or market participation. Not
every agent is present in the market in every state; only a random set of agents gets access to the
market, which can be thought of as a meeting place where they can trade. If agents do not have
access to this market, they are in autarky and have to consume their endowment.

B.3. Generalizations. The basic setup can be generalized considerably. First of all, we can index
by time, with long or even infinite horizon. We can entertain Markov process on shocks. Our
timeline can be divided into sub-periods: traders meet in a market for two or more periods before
the next market participation draw (and we allow both implementation via bilateral links of a
multi-person outcome as well as borrowing and lending with risk contingencies within the longer
period). Though dynamics could easily be incorporated throughout most of the paper, we spare
the reader the requisite notation.
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We are featuring one good but we can easily generalize the notation and allow commodity vectors
over goods. Then there would be a sequence of resource constraints (market clearing), one for each
good; utility functions still strictly concave though. Likewise we can reinterpret goods as securities
and endowments as portfolios.

Trivially, our setting could be partial equilibrium with prices of all goods, or assets, fixed outside,
as in a small open economy, one market at a time, or one village at a time. In this case value
functions would be strictly concave over a selected numeraire good, taking outside prices as given.
It is also easy to allow preference shocks rather than endowment shocks.

Moreover, we can generalize this to many cliques of agents meeting or, in other words, many
segmented markets that are drawn in parallel, with ζ now being an n×k matrix and ζmi is a dummy
for whether i participates in market m. We study this in Online Appendix F.1.

Notice that our model does not force agents to interact with the same collection of agents in
every period or every state. So, for example, an agent of type A may interact with those of type B
in one state. But in another state perhaps agents of type A interact with agents of type C.

Appendix C. Responsiveness to Liquidity Injections

We explore agents’ choices to determine whether or not they participate in contexts wherein the
infinitesimal liquidity injection affects their participation distribution. This not only correlates y
and ζ through this endogenous decision making process (which alone does not necessarily make
the model responsive to injections), but changes the financial centrality expression as we noted
in Proposition 4.1. Centrality now captures how marginally increasing income in states that the
agent trades in, increases both the likelihood that the agent trades and the concurrent market
participation decisions of other agents. This stands in contrast to endogenous participation models
wherein the participation distribution is inert to infinitesimal liquidity injections.

C.1. Overview. Let us begin by clarifying the role of endogenous participation. There are two
cases. In the first, every agent can decide whether or not to participate, given a distribution of
participation opportunities. For instance, in a given state of the world, agents i1, . . . , im may have
the opportunity to enter the market, but not all necessarily decide to participate. If this decision
in equilibrium is unchanged by an ε liquidity injection to any agent, then we may as well imagine
the participation distribution as being exogenous. Such an example was given in the introduction.
Financial centrality is identical even in the case where agents choose to participate; after all, the
choice has no meaningful bearing on altering this distribution, so the planner evaluates the injection
in the same manner as if this participation distribution was indeed exogenous.

In contrast, in what follows below, we focus on cases where the injection affects the participation
decision itself. This allows us to study the participation effect, which thus far has not been a factor
in our analysis of financial centrality. Recall Proposition 4.1, wherein financial centrality included
an extra term

Es


∑
j∈I

λjuj (cj (s))

Si (ζ | y)


which we called the participation effect. The goal of this section is to study this term beyond
the example presented in the body. So we present two additional models that are responsive to
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infinitesimal liquidity injection, but with no income effect (i.e., Si (y) = 0 almost surely). We
also present for clarification and contrast, a fourth model in which participation and income are
correlated and yet the response is inert.

C.2. Private Information about Income Shocks. In this example, the consumption allocation
is also common knowledge, but agents can only observe (objective) private information about
both income shocks y ∈ Rn, and about other agents information. We encode beliefs and higher
order beliefs about income shocks and information using a type space structure, a modeling device
introduced by Harsanyi (1967). Formally, we model agents’ beliefs with a signal structure (or a
common prior type space) Z =

{
(Zi, βi : Zi → ∆ (Y × Z−i))i∈I , β0

}
where zi ∈ Zi is the agent’s

signal (or type). Here this represents the information they observe before observing the draw of
s = (y, ζ). β0 ∈ ∆ (Y ×

∏
i Zi) is a common prior distribution over income shocks and signals and

βi (· | zi) is the conditional belief distribution over income shocks and signals of other agents, derived
from β0 using Bayes rule.12 Because Y is assumed to be finite and the choice set for every agent is
binary, we can focus also only on finite signal spaces. We also add the constraint that margY β0 = F

(i.e., the marginal distribution over income shocks coincide with the true distribution of shocks).
Based on its type, agent i decides whether or not to access the market.

The timing is as follows:

(1) Income shocks y ∈ Rn+ is drawn according to F (y).
(2) Agents observe only zi ∈ Zi , which are jointly drawn with probability

(C.1) P (z | y) = β0 (y, z) /
∑
ŷ∈Y

β0 (ŷ, z) .

(3) Agents decide whether to access the market (ζi = 1) or not (which may be costly, with
commonly known participation costs ki) given their private information zi ∈ Zi.

(4) State s = (y, ζ) is publicly observed, and agents consume according to allocation c (s).

To characterize the agents’ market participation decisions, they need to form beliefs over the vector
of income draws and market participations. We will model this as a game, where agent’s strategies
are the mappings from information to market participation. The natural solution concept here is
the Bayesian Nash Equilibrium (BNE): a profile of functions ζ∗i : Zi → {0, 1}13 is a BNE if and
only if, for all i ∈ I and all zi ∈ Zi

if ζ∗i (zi) = 1 =⇒ Es {ui [ci (s)] | ζi = 1, zi} − ki ≥ Es {ui (yi) | zi}

where the expectations for each agent is taken with respect to the probability measure

P (s = (y, ζ) | zi) :=
∑
y∈Y

∑
j 6=i

 ∑
zj∈Zj :ζ∗j (zj)=ζj

βi (y, z−i | zi)

 .

12That is, for all (y, zi, z−i) we have βi (y, z−i | zi) = β0[y,(zi,z−i)]∑
t̂i
β0[y,(ẑi,z−i)] .

13Without loss of generality, we focus on pure strategy equilibria.
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Given a signal structure Z and a BNE profile ζ∗ = (ζ∗i (·))i∈I , we can then derive an ex-ante
equilibrium distribution over states s = (y, ζ) as

P (s = (y, ζ)) = P (y)
∑

z∈Z:ζ∗i (zi)=ζi∀i∈I
P (z | y) ,

using (C.1). This would be the measure used by the social planner when measuring financial
centrality, since they have to integrate over agents’ signals from an ex-ante perspective, according
to the assumed common prior distribution β0.

In the model proposed in Section C.2, we assume that the credit line policy t = (tj)j∈J is common
knowledge among agents, and hence the policy has no effect on the information agents have access
to. It does, however, affect the relative utility of market access. That is, the market access strategy
(given transfer ti ≥ 0) is

(C.2) ζ∗i (θi | t) = 1 ⇐⇒ Es {ui [ci (yi + ti, y−i, ζ)]− ui (yi) | θi} ≥ ki.

If ci (·) is a weakly increasing in own endowment (e.g., ci (s) = yζ in an environment with an
utilitarian planner, and agents with homogeneous preferences) the transfer ti acts as a subsidy
for market participation, increasing the set of signals θi for which condition (C.2) is satisfied.
However, since the transfer policy is assumed to be common knowledge, this also affects the marker
participation decisions of other agents. If ci is weakly increasing for all agents (e.g., also ci (s) = yζ)
then other agents also have higher incentives to access the market, since it is more likely that i will
be trading, and i is more valuable, since i increases aggregate income whenever they trade. We
summarize this result in the following corollary.

Corollary C.1. Consider the above model described in Section C.2 and λ ∈ ∆n. If the allocation
c (·) solving (3.2) is non-decreasing in y, then FCi > Es [ζiq (s)].

C.3. Moral Hazard and Effort in Accessing the Market. We briefly set up another example
of endogenous market participation, without fully analyzing it, which concerns moral hazard. This
is a generalization of the model analyzed in the preceding section. We take the exact same signal
structure as before. The only difference is that instead of being a binary decision (whether to access
the market or not) here we have a continuum of choices.

Assume that y is realized and every agent i observes only zi, an imperfect signal about y (i.e.,
zi ∼ πi (zi | y) for some conditional cdf πi). Given this private information, agents simultaneously
choose the probability of accessing the market, denoted by pi (zi) ∈ [0, 1] = P (ζi = 1). Agents have
to pay a disutility cost ψ (p), where ψ is strictly increasing and convex.

Given the profile of functions (pi : Zi → [0, 1])ni=1, the joint probability of market participation,
given income draws, is given by

P (ζ | z) =
n∏
i=1

[pi (zi)]ζi [1− pi (zi)]1−ζi .

Then consumption is realized according to a feasible consumption allocation ĉ (s) = ζici (s) +
(1− ζi) yi, where ci (·) is an (equilibrium) feasible allocation. For this example, we leave unspecified
the choice of the consumption allocation, and it is only assumed that the consumption allocation
as a function of the state s = (y, ζ) is common knowledge among agents.
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Agents preferences (given pi (·) ) are

Ui
(
yi, pi | (pj (·))j 6=i

)
= piEt−i,s

∑
ζ−i

∏
j 6=i

[pj (zj)]ζj [1− pj (zj)]1−ζj ui [ci (yi, y−i, ζi = 1, ζ−i)] | zi


+ (1− pi)ui (yi)− ψ (pi) .

As in the private information example above, the solution concept once again is the BNE, with
p∗ (t) = (p∗i (zi))i∈N such that for all i and all yi ∈ Y :

p∗i (zi) ∈ argmax
pi∈[0,1]

Ui

(
yi, pi |

{
p∗j (·)

}
j 6=i

)
.

C.4. Model with Investment in Risky Assets. Consider the model in Section B.2 , with no
participation effect (i.e. Si (ζ | y) = 0 a.e) where agents choose their portfolios wi ∈ RK after the
liquidity injection. We will show that in the case with CARA preferences and gaussian returns,
there is no income effect (i.e. Si (y) = 0 a.s.), although this would typically not happen with
different preferences.

The timing in this model is then (1) endowments are drawn; e ∼ N (µe,Σe) (2) Agents observe
(e, ζ) and choose portfolios wi (contingent on being in the market) (3) Returns are drawn R ∼
N (ρ,Λ) and incomes are realized as yi = ei + w′iR and (4) Consumption is realized according to
allocation. In general, an increase in the liquid asset could have effects on the demands of the
risky and risk free assets, changing marginally their portfolio choice, and hence, the distribution of
income. However, in the case of CARA preferences, this will not be the case.

Proposition C.1. Take the model with CARA preferences and gaussian returns. After the realiza-
tion of ei, the portfolio choice is wi = (riΛ)−1 ρ (i.e. is independent of the realization). Therefore,
income is distributed as yi = ei + ρ′ (riΛ)−1R.

Proof. See Online Appendix H. �

Corollary C.2. In the investment model with CARA preferences and gaussian returns, there is
no income effect; i.e., Si (y) = 0 a.s.

The reason behind the corollary is that the investment in the risky assets are independent of the
endowment level, and hence, will also be independent of the liquidity injection, since it is equivalent
ex-post to an increment in the available endowment. This is of course, a consequence of the absence
of income effects exhibited by CARA preferences.

An important corollary of this model is how this model obtains income draws more positively
correlated than the endowments process. More specifically, the result of Proposition C.1 implies
that the income distribution has a covariance structure given by

cov (yi, yj) = (rirj)−1 ρ′Λ−1ρ+ cov (ei, ej)

where the first component term, always positive, is the correlation resulting from the fact that all
agents hold different amounts of a market portfolio P = Λ−1ρ. This effect exacerbates aggregate
risk, both with inert or responsive environments in market participation. This source of contagion
is studied in Jackson and Pernoud (2019).
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C.5. Team Production Environments. Finally, we illustrate that simply having income and
participation being correlated does not mean a model exhibits responsiveness. We consider a
setting where market participation shocks are determined exogenously first and then the income
distributions for agents with market access depend on the identities of those trading. Formally,
the timing on the resolution of uncertainty would be as follows: (1) Market participation ζ is
drawn according a distribution G (ζ); (2) Income distribution is drawn from y ∼ F (y | ζ). A
leading example of such an environment is one of team production. Agents without market access
draw income from their autarky income distribution yi ∼ Fi (yi). However, once agents are drawn
together to form a market, income is drawn jointly, and then agents can divide aggregate income
draws amongst them in any feasible consumption allocation.

Models like this also show correlation between market participation and income. However, it
is straightforward to see that in such models, financial centrality is simply FCi = Es {ζiq (s)} as
before. This is simply because the injection policy of giving an injection to agent i has no effect on
the market participation distribution, since it is assumed here to be exogenous to income draws.
Clearly, this setting is one that is inert to infinitesimal liquidity injection. But unlike the baseline
model, income and market participation are now not independent, and the expectation has to be
calculated over market participation and income shocks jointly.

Appendix D. A Tractable Example of a Market Formation Process

Until now our discussion of the stochastic financial network has been rather abstract. It has
been a fairly unrestricted distribution over the space of all subsets of agents: the realized market
can be comprised of any subset of agents and then there is a distribution over each possibility. It is
nonetheless instructive to examine specific examples that may micro-found the stochastic financial
network distribution.

To make matters simple, consider the homogenous parameter case. Since

(D.1) FCi ∝ Eζ
{
ζi

(
1 + γ

n (ζ)

)}
we need to calculate E

{
1

n(ζ) | ζi = 1
}
and P (ζi = 1).

D.1. Generalized Poisson Model. We generalize the degree model presented in the body. Let
zi ∈ [0, 1] denote the probability that an agent gets selected as the host. Then let p denote a
matrix with entries pi,j denoting the probability that j is in the market when i is the host, which
is independent across j. We set pi,i = 1.

It is useful to define an individual specific parameter, which is the expected number of individuals
in the trading room when i is selected as host, νi. This can be computed as νi :=

∑
j pij . To

characterize financial centrality, we need to know the expected sizes of the trade rooms when i

is host and conditional on i being in the room, integrating across the other possible hosts. Two
auxiliary random variables will be very useful in the rest of the section: n−i = (nζ − 1) | i is host,
and n−j,i = (nζ − 2) | j hosts & ζi = 1. This means that whenever i hosts, market size is nζ =
1 + n−i, and whenever j hosts, and we condition on i accessing the market, then market size is
nζ = 2 +n−j,i. This auxiliary random variables have range from 0 to k ∈ {n− 1, n− 2}, and based



LIQUIDITY, FINANCIAL CENTRALITY, AND THE VALUE OF KEY PLAYERS 47

on our assumptions, we have

n−i ∼
∑
k 6=i

Bernoulli (pi,k) and n−ji ∼
∑

k/∈{j,i}
Bernoulli (pj,k) ,

where these Bernoulli distributions are independent, with success probabilities strictly less than
1.14 These distributions are also called Poisson Binomial distributions and have been extensively
studied in the literature. We will write X ∼ PB (p) with p = (p1, p2, . . . , pk) the vector of success
probabilities of each Bernoulli trial. This distribution, in some cases, can be well approximated by
a Poisson distribution.15 In this model, we have that n−i ∼ PB (Pi) and n−ji ∼ PB (P−j,i) where
Pi = (pi,k)k 6=i ∈ [0, 1]n−1 and P−j,i = (pj,k)k/∈{i,j} ∈ [0, 1]n−2. These random variables are useful
to write our approximation to financial centrality as

FCi ≈ F̂Ci := P (ζi = 1)×
[
1 + γE

(
1
nζ
| ζ
)]

= pi

1 + γziE
( 1

1 + n−i

)
+ γ

∑
j 6=i

zjE
(

1
2 + n−ji

) ,
where pi = P (ζi = 1). Therefore, we need to calculate the inverse moments E (1/(1 +X)) and
E (1/(2 +X)) for n Poisson Binomial random variables; X = n−i and X = n−ji for all j 6= i.
Hong (2013) provides a general survey on the commonly used methods to calculate explicitly the
probability function of Poisson Binomial distributions using either recursive or Discrete Fourier
Transform methods, which are fairly fast even with large n.16 We also survey results (starting
with Le Cam (1960)) that show that if the expected number of successes of a Poisson Binomial
distribution is sufficiently high (corresponding in this case with higher expected market sizes), then
it can be well approximated by a Poisson distribution. 17 In the context of this model, it means
that if E (n−i) = νi − 1 is small (relative to n), then we can approximate n−i ∼ Poisson (νi − 1)
and n−ji ∼ Poisson (ν−ji), where ν−ji = E (n−ji) =

∑
k/∈{i,j} pjk = νj − pji − 1.

IfX ∼ Poisson (ν − 1), then E (1 +X)−1 = m1 (ν) := [1− exp (1− ν)] / (ν − 1) and E (2 +X)−1 =
m2 (ν) := [1−m1 (ν)] / (ν − 1), both strictly decreasing functions of ν ≥ 1. Using these formulas,

14Exact and approximation methods for calculating expectations of market sizes are sensitive to the assumption of
interior (i.e., in (0, 1) ) success probabilities. This is the reason for the need to define the random variables n−i and
n−ji.
15Le Cam (1960) provided bounds on the error of approximation, which were improved by Stein (1986); Chen (1975),
and Barbour and Hall (1984); Sason (2013) show that if X̂ is the Poisson approximation with mean λn =

∑n

i=1 pi,n,
then dTV

(
X, X̂

)
≤
(
1− e−λn

)∑
i
p2
i,n/λn, where dTV (·) denotes the total variation distance. This approximation

will then typically be valid (for large n) if and only if limn→∞ λn =∞; i.e. when market sizes νi grow without bound
as the number of agents increases.
16Chen and Liu (1997) show stable (i.e. non-alternating) methods are O

(
n2), which would make the calculation of

financial centrality of a given agent be O
(
n3). Discrete Fourier Methods are usually much faster (Fernández and

Williams (2010)). See Hong (2013) for a general survey on the existing exact and approximating methods.
17This is not the only approximation studied in the literature. In models where the expected market size is high,
Gaussian approximations behave rather well (see Volkova (1996), Hong (2013)). If success probabilities are similar
(i.e., the variance σ2

p := n−1∑
i
(pi − p)2 is small enough) then approximation to a Binomial distribution is fairly

accurate (Ehm (1991); Barbour et al. (1992)).
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we can then approximate F̂Ci by:

F̂Ci ≈ pi ×

1 + γzim1 (νi) + γ
∑
j 6=i

zjm2 (νj − pj,i)

 .
This shows the following. First, nodes with a larger expected reach as measured by νi are more
central (as long as n is large enough relative to γ). Second, nodes that have larger expected inverse
room size when they are hosts are more central. Third, i is more central when pj,i increases,
particularly when νj is small. So when j tend to invite small rooms as hosts, but i is likely to be
in such a j’s room, then i is more valuable.

A special case are symmetric models, where zi = 1/n for all i and pi,j = pj,i (e.g., the model
pi,j = αδ(i,j), since distance is symmetric). In this case

FCi = 1
n
νi

1 + γ × 1
n
m1 (νi) + γ

∑
j 6=i

1
n
m2 (νj − pj,i)

 .
This has the advantage that the centrality of agent i depends solely on the expected market size
of each agent (as a host) that they get connected to, and the probability that i conects to them.
The marginal value of the inverse room size effect when i is the host, proportional to νi ×m1 (νi),
declines in νi if and only if νi ≥ 2.79 (there is a positive effect in P (ζi = 1), but an offsetting
negative effect in m1 (νi) ).

If we want to calculate centrality exactly, we can still use the calculation of the exact pdf of
n−i and n−ji to get the exact financial centrality. For example, in the CARA-Normal model with
homogeneous preferences and independent and identically distributed income draws, we know that
FCi = Eζ {ζi exp (γ/nζ)}, which can be decomposed as

FCi = pi

ziE
[
exp

(
γ

1 + n−i

)]
+
∑
j 6=i

zjE
[
exp

(
γ

2 + n−ji

)]
and then be calculated explicitly using the distributions for n−i and n−ji.

D.2. Sequential Market Formation. In the Poisson models, for j 6= k 6= i, note that ζj ⊥ ζk

conditional on i hosting. But trading groups may be determined sequentially, along a chain of
meetings. In this case the study of random walks on graphs provides the right vocabulary to
capture this.

We can model this in a simple way, though the analytic characterization is hard to come by. Let
(zi)i∈I denote the probabilities that each node is the host, let (pij)i,j∈I denote the probability that
i meets j, and let β be the probability that at each stage the chain continues. With complementary
probability 1−β, the chain terminates exogenously. However, the chain also terminates if an agent
is revisited (and hence no new agents are added to the market).

This process, at termination, determines the size of the trading room. While it is easy to describe,
and easy to simulate, it is hard to analytically compute moments for the distribution of 1

nζ
(Aldous

and Fill, 2002; Durrett, 2007), even if chains are not terminated upon revisiting an agent. This is
because what matters is the number of distinct agents in the market, not just the number of steps
the chain makes (which, in that case, would simply follow a geometric random variable). In the
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special case with large n, zi = 1/n, β = 1 (no random exogenous termination) and pij = 1/di (i.e.,
uniform random walk, with equal probability among first degree neighbors) and g comes from an
Erdös-Renyi process, Tishby et al. (2017) get closed form expressions for the distribution of chain
length (or market size in our setup), showing that it follows a product of an exponential and a
Rayleigh distribution.18

D.3. Market Participation Shocks as Transaction Chains. Now we give an alternative in-
terpretation of the market participation shocks. Any market participation shock can be interpreted
as a realization of a chain of bilateral transactions among a subset of agents in the economy, which
are allowed to run short-run deficits. Formally, a simple transaction chain is a set of agents that
can only trade with adjacent agents. Namely, there is a set of agents J = {i1, i2, . . . , ik} ∈ I (which
are selected randomly), such that ij can trade only with agents ij−1 and ij+1, for j ∈ {0, 1, . . . , k}
(except for the first agent i1, who can only trade with i2, and the last member ik, who can only
trade with ik−1). Agent j can make or receive transfers T̂j,h ∈ R for h ∈ {j − 1, j + 1}, which
might be such that T̂j,h + yj < 0 (i.e., giving agent h more than the endowment they have at
the moment of the transaction). If T̂j,h > 0 it means that j sends resources to agent h, while
T̂j,h < 0 means that j receives resources from k. The budget constraint that j faces is then
Tj,j−1 + Tj−1,j + Tj,j+1 + Tj+1,j ≤ yj . Defining Tj,h as net transfers instead of gross transfers, we
then have that Tj,j+1 = −Tj+1,j . Therefore, we can work only with the net transfers Tj = Tj,j+1

for agents j = 1, 2, . . . k − 1, and the simplified budget constraint for each agent is

Tj ≤ yj + Tj−1

for every j = 1, . . . , k−1. There is a clearing house that, at the end of the day, settle all transactions.
That is, agents can have short run deficits, but at the end of the period, payments are settled
simultaneously, once all transactions are agreed upon. Without loss of generality, let’s assume
ij = j, so that C = {1, 2, . . . k}. A consumption profile of the agents in the chain C, is a description
of consumption amounts c = (c1, c2 . . . ck). A consumption allocation is feasible if and only if∑k
i=1 ci =

∑k
i=1 yi. We say that a consumption bundle is transfer-feasible if and only if it is feasible

and there exist transfers {Ti,j}ni=1 such that

(1) cj = yj + Tj−1 − Tj ≥ 0
(2)

∑k−1
j=1 (Tj−1 − Tj) = 0.

In order to be able to define this objects for all j, we set T1−1 = Tk,k+1 = 0. Therefore, for i = 1
we have c1 = y1 − T2 and for i = k ∈ {1, . . . n} we have ck = yk + Tk−1. For such a consumption
allocation, we say the sequence of net transfers {Tj} implements the allocation c. The (rather
obvious) result is that the set of feasible consumption profiles is equal to the set of transfer feasible
allocations. This then implies that by modeling the interactions among agents as trades as if
everyone was trading with each other is just an useful representation.

So, the basic assumptions in this environment are that (1) agents can only trade bilaterally
with adjacent agents (with a predetermined order) in the chain and (2) promises to pay (i.e., net
transfers) have to be settled jointly, after all trades have been agreed upon. This is the most

18This, of course, can be adapted by allowing β ∈ (0, 1).
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important assumption which abstracts away from leverage or run-away constraints (which would
limit the short-run deficits agents can have in any given moment). In Proposition D.1 we show
that, if we allow agents to run short-run deficits until the end of the day, when all transactions are
settled, then any feasible consumption allocation among k agents can be implemented by a trading
chain (in no particular order of agents).

Proposition D.1. Let c = (ci)i=ki=1 be a feasible consumption allocation (so
∑
i ci =

∑
i yi ). Then,

the net transfers Tj defined as

(D.2) Tj = Tj→j+1 :=
i=j∑
i=1

(yi − ci)

implement c. Moreover, the following gross transfers implement c

T̂j→j+1 = max {0, Tj} and T̂j+1→j = max {0,−Tj}

so either T̂j→j+1 = Tj > 0 and T̂j+1→j = 0, or T̂j→j+1 = 0 and T̂j+1→j = −Tj ≥ 0.

Proof of Proposition D.1. The fact that
∑k
j=1 (Tj−1 − Tj) comes from equation (D.2): we have

Tj−1 − Tj =
i=j−1∑
i=1

(yi − ci)−
i=j∑
i=1

(yi − ci) = cj − yj

and hence
k∑
j=1

(Tj−1 − Tj) =
k∑
j=1

(cj − yj) = 0

since c is feasible. The consumption attained for each agent is

ĉj = yj + Tj−1 − Tj = yj + (cj − yj) = cj

i.e., it achieves the target consumption allocation. �
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Appendix E. Decentralization as Arrow Debreu Economies

Proof of Proposition 5.1. We will focus on allocations where ci (s) > 0 for all s = (y, ζ) : ζi =
1 for simplicity. Since (5.1) is a convex optimization problem and u (·) is strictly concave and
differentiable, Kuhn-Tucker conditions are necessary and sufficient to characterize the optimum.
This is also true for the planner’s problem (3.2). Let µi > 0 be the Lagrange multiplier of the AD
budget constraint in (5.2) (this constraint will always be binding). The first order conditions of the
consumer problem with respect to ai (s) at states s = (y, ζ) : ζi = 1

(E.1) u′i [ci (s)] P (s) = µir (s) for all s : ζi = 1 where ci (s) = yi (s) + ai (s)

where ci (s) = yi (s)+ai (s). Also see that the choice of ai (s) is superfluous in the consumer’s prob-
lem if ci (s) = 0 for all s : ζi = 0, and that the budget constraint can be written as

∑
ζici (s) r (s) ≤∑

ζiyir (s). Hence c = (ci (s))i∈I,s∈S is a Walrasian Equilibrium with transfers allocation if
∃µi > 0∀i ∈ I such that conditions (E.1) and the resource constraint (3.3) are satisfied, and such
that ci (s) = yi for all s : ζi = 0. The corresponding Walrasian Equilibrium has ai (s) = ci (s)− yi,
r (s) = (1/µi)u′i [ci (s)] P (s) > 0 and τi =

∑
s ai (s) r (s) = (1/µi)Es {[ci (s)− yi]u′i [ci (s)]}.

Doing the same exercise for the planner’s problem (3.2) , we get that a consumption allocation
ci (s) solves the planner’s problem with Pareto weights λ ∈ ∆ if and only if it satisfies the resource
constraint (3.3) for all s ∈ S, ci (s) = yi for all s : ζi = 0 and all i ∈ I, and satisfies for all i ∈ I:

(E.2) λiu
′
i [ci (s)] = q (s) for all s : ζi = 1

where q (s) is the (normalized) Lagrange multiplier of the resource constraint at state s.
Therefore, a Walrasian Equilibrium with transfers consumption allocation c will also be the

solution to the planner’s problem (3.2) with Pareto weights λi = 1/µi. Likewise, for given λ ∈ ∆,
the solution to the planner’s problem (3.2) will be a Walrasian Equilibrium with transfers if we
take µi = 1/λi. Moreover, the implementing price function r (s) and transfers τi satisfy:

(E.3) r (s) = (1/µi)u′i [ci (s)] P (s) = q (s) P (s)

τi = Es {[ci (s)− yi] q (s)}

since 1/µi = λi. �

Of course, there is a mapping between a Walrasian Equilibrium without lump-sum transfers and
its corresponding utilitarian planner representation, with its Pareto weight vector λ. Two special
cases are of interest. In the benchmark case of the CARA-Normal model, assuming constrained
efficient allocations are implemented without lump sum transfers, we obtain a fixed point equation
mapping the primitives of the model (income distribution moments and preferences) to the Pareto
weights of the planner’s problem which we derive in Online Appendix G.

We also show that in the case where the planner has uniform Pareto weights (i.e., λi = 1/n for
all i), preferences are identical and shocks are i.i.d. Gaussian variables, then the planner’s problem
can be implemented by a Walrasian Equilibrium with no transfers with q (s) = exp

(
−ryζ

)
and

ci (s) = ζiyζ + (1− ζi) yi, where yζ := 1
nζ

∑
j∈I ζjyj is the mean income of agents in the market,
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and nζ :=
∑
j∈I ζj is the market size at state s. Moreover, the price of personalized debt is simply

FCi = Eζ
{
ζi exp

(
γ σ

2

2

)}
.

Appendix F. Extensions

In this section we study two extensions that depart from the class of environments above. One of
the most seemingly important restrictions on the models studied so far is the existence of centralized
markets. That is, agents either are in autarky or have market access and can trade with any other
agent that also has market access. While the bilateral trading chains introduced above relaxes
this interpretation, it maintains the possibility that any agent is reachable by any other through
a finite sequence of trades, as long as both have market access. In Section F.1 we introduce a
generalization of the basic environment, allowing for the existence of several segmented markets
working in parallel, where agents can only trade among a subset of all agents who have market
access. That is, a draw from the stochastic financial network consists of a collection of subgraphs
(cliques). For example ijkl and mnop may be two cliques of four who can exchange with each other
in some state of the world. But in another state of the world, perhaps the cliques are ij, kl, mno,
and p (a singleton). Each clique is a segmented market. We show that the basic definitions and
formulas of financial centrality still hold, if we reinterpret having “market access” to be present in
the market where the agent being injected with liquidity is trading at.

Another important assumption maintained throughout this paper is that the social planner
evaluating the marginal value of injected liquidity also is able to implement the allocation c (·)
that maximizes her expected utility. However, a relevant case is one where the planner can only
influence the economy by the liquidity injection policies and cannot directly choose the allocation
herself. This would be the case when the allocation is chosen according to some other solution
concept, like Walrasian Equilibrium, multi-player bargaining games, and so on. In such situations,
the social planner would have to take the consumption allocation as given when measuring the
marginal effects of injecting liquidity in this economy. In Section F.2 we study financial centrality
under the assumption that the consumption allocation is Pareto optimal, which implies that there
exist some representing social preferences (i.e., Pareto weights) for which it would be optimal. We
then obtain similar expressions for financial centrality, which now incorporates a term relating the
Pareto weights of the social planner with the representative Pareto weights of the allocation.

F.1. Segmented Markets. We consider an environment with the same income shocks and pref-
erences, but one where agents may gain access to random, segmented markets. Formally, a market
segmentation is a partition π = {m1,m2, . . .mr} over the set of agents I; i.e., ∪m∈πm = I and
m ∩m′ = ∅ for all m 6= m′. In this alternative environment, the relevant state of nature is now
s = (y, π), where π is the market segmentation state, with probability distribution P (s) . We refer
to each m ∈ π as a market at state s. Let P be the set of all partitions of I that have positive
probability under P (s). We denote m (i, π) ∈ π to be the market (at segmentation π) where i is
able to trade. If m (i, π) = {i}, we say i is in autarky at π, and otherwise we say i has market
access at π.

Segmented markets now modify the definition of feasibility of allocations. We say that an
allocation c = (ci (s))i∈I is feasible if and only if, for all s = (y, π) and all m ∈ π we have
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i∈m ci (s) ≤

∑
i∈m yi. Clearly, the class of environments embeds the single market environments

studied before—i.e., markets where any partition π in the support is made up of a single multi-agent
market mu (π) ⊆ I with |mu (π)| ≥ 1, and everyone else being in autarky. Hence we can summarize
the state by s = (y, ζ) where ζi = 1 if and only if i ∈ mu (π). In general, for a given partition π we
write ζmi ∈ {0, 1} for the indicator of whether i has access to market m.

Given Pareto weights λ ∈ ∆n and agent i ∈ I, the planner’s problem value function of in-
jecting liquidity ti ≥ 0 to agent i is V s (ti) := max(cj(y,π))j∈I Es

{∑
j∈I λjuj [cj (s)]

}
subject to∑

j∈m cj (s) ≤
∑
j∈m yj + tiζ

m
i for all s = (y, π) and all m ∈ π. Financial centrality is now defined

as before. Intuitively, a planner needs to integrate also over all possible market segmentations in
order to assess the marginal value of the liquidity injection policy for agent i, since the shadow
value of the injection will depend on the market agent i is trading at. We show that the financial
centrality measure follows the same formula as in the centralized markets environments, in a “vir-
tual single market economy” where having market access is understood as being able to trade with
the agent of interest.

Definition F.1. Take a segmented market economy E , with distribution over states P (y, π).
Define Ei to be a virtual single market economy where all agents have identical preferences over
consumption, and the distribution over outcomes P̃ (y, ζ) is given by:

(F.1) P̃ (y, ζ) = P

(y, π) ∈ Y × P :

(1) : j ∈ m (i, π) for all j : ζj = 1 and

(2) : #m (i, π) > 1

 ,
i.e., an agent j 6= i has market access on economy Ei only when they are able to trade (i.e., in the
same market) with agent i in E .

Proposition F.1 asserts that financial centrality in a segmented markets economy follows the
same “asset pricing formula” we had in Proposition A.3, but on the virtual single market economy
Ei. The proof is quite straightforward, and simply generalizes the proof of Proposition A.3 and is
therefore omitted.

Proposition F.1. . Let E be a segmented markets economy, and suppose it is inert to infinitesimal
provisions of liquid assets. Then, for i ∈ I and any λ ∈ ∆, the financial centrality for agent i
coincides with the financial centrality of agent i in the virtual single market economy Ei. That is,

FCi := ∂V s (t)
∂ti

|t=0= EP̃
s=(y,ζ) {ζiq (s)}

where EP̃ (·) is the expectation taken w.r.t measure P̃ defined in F.1.

Intuitively, financial centrality only deals with the effect of the increase in agent i’s endowment,
which can only impact those agents who can trade with her. Because of separability of the plan-
ner’s preferences over different agents consumptions, the marginal welfare effect on the segmented
markets i is trading on have no effect on the welfare evaluation of other segmented markets at the
same time. Therefore, whether agents not trading with i are either trading among themselves, or in
autarky, is irrelevant when evaluating the policy. Moreover, any two states which generate the same
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segmented market for agent i are equivalent from the point of view of the planner when evaluating
this policy. This result is easily generalized for endogenous market participation economies.

F.2. Passive Planners. In this section, we consider the original environment, but assume the
consumption allocation is a primitive of the model (e.g., being determined by a Walrasian Equi-
librium or a bargaining protocol). In this setup, the social planner can only influence the allo-
cation by making the proposed liquidity injections. If the social planer has preferences given by
V = E [

∑
λiui (ci)], and agents consume according to a (differentiable) allocation c (·), financial

centrality is defined as

FCi = Es

ζi ∑
j:ζj=1

λju
′
j [cj (s)] ∂cj

∂yi
(s)

 .
An important case is where c (·) is a (constrained) Pareto optimal allocation; i.e., there exists a

representing Pareto weight vector ϕ such that c (·) solves problem (3.2) with ϕ instead of λ. Also,
let q (s) be the usual normalized Lagrange multiplier of the resource constraint at state s, for this
ϕ− planner problem. It is easy to show (see below) that financial centrality in this setting is

(F.2) FCi = Es

ζiq (s)

 ∑
j:ζj=1

ρj
∂cj (s)
∂yi

 ,
where ρj := λj/ϕj

19.
A special case is when the consumption allocation satisfies ∂cj/∂yi = n−1

ζ whenever ζj = ζi = 1.
This is the case in the CARA model with homogeneous preferences, even if income draws are not
normal (see below). Whenever this happens, equation F.2 can be simplified to

FCi = Es {ζiq (s)× ρ̄ζ} ,

where ρζ = n−1
ζ

∑
ζjρj is the arithmetic mean of the Pareto weights ratio, and q (s) is the Lagrange

multiplier in the Pareto problem with weights ϕ. In the CARA-Normal model this then translates
into

FCi = Eζ

{
ζiϕζ exp

(
−rµζ

)
exp

(
r2

2
σ2
ζ

nζ

)
× ρζ

}
,

which is the same formula as before, but with an extra term, ρζ := n−1
ζ

∑
ζj (λj/ϕj) which

is the mean of relative Pareto weights. Another important case where ∂cj/∂yi = n−1
ζ is an

environment where agents have homogeneous preferences and identical and independently dis-
tributed random draws. If the allocation comes from a Walrasian equilibrium, we know that
the representing Pareto weight is ϕj = 1 for all j (see Proposition G.2), and therefore FCi =
exp (−rµ)Eζ

{
ζi exp

(
r2

2
σ2

nζ

)
× λζ

}
, where λζ := n−1

ζ

∑
ζjλi is now the mean of the Pareto weight

of the social planner. In the baseline case of with homogeneous preferences, i.i.d. income draws
and a representing Pareto weight ϕj = 1 for all j (so ci = y if ζi = 1) we can approximate the cen-
trality measure to FCi ≈ Eζ

{
ζi
(
1 + γ σ

2

nζ

)
λζ
}
, which resembles the centrality measure obtained

in Subsection G for CES and CARA preferences.
19Of course, when λ = ϕ we have ρj = 1 for all j, and since

∑
j:ζj =1 ∂cj (s) /∂yi = 1 for all s : ζi = 1, we recover the

usual formula in this case.
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Proof. First, we want to show equation F.2. For that, we use again the first order conditions
of planner’s problem 3.2 but representing Pareto weights ϕ ≥ 0: ϕju

′
j (cj (s)) = q (s) ⇐⇒

λju
′
j (cj (s)) = ρjq (s) where ρj = λj/ϕj . Using this in the original definition of centrality in

this setup, we get

FCi = Eζ

ζi ∑
j:ζj=1

λju
′ (cj (s)) ∂cj (s)

∂yi

 = Eζ

ζi ∑
j:ζj=1

ρjq (s) ∂cj (s)
∂yi


= Eζ

ζiq (s)
∑
j:ζj=1

ρj
∂cj (s)
∂yi

 ,
showing the desired result. Also, because the resource constraint is always binding at every
state s, we have the identity

∑
j:ζj=1 cj (s) =

∑
j:ζj=1 yj , which at states s : ζi = 1 implies that∑

j:ζj=1 ∂cj (s) /∂yi = 1. Therefore, if λ = ϕ, then ρj = 1∀j, q (s) is the multiplier for the Pareto
problem with Pareto weights λ = ϕ and hence, FCi = {ζiq (s)} , like we had above. �

We now study the special case of the CARA-Normal model with homogeneous preferences and
a representing Pareto weight vector ϕ. We know (see Online Appendix G) that in this model,
cj (s) = r−1 ln

(
ϕj/ϕζ

)
+ y, where ϕζ = exp

(
n−1
ζ

∑
ζj lnϕj

)
. This then means that whenever

ζi = ζj = 1, we have ∂cj (s) /∂yi = n−1
ζ . Moreover, we also showed that in this environment,

q (s) = ϕζ exp (−ry). Therefore, using F.2 we get FCi = Es
{
ζiϕζ exp (−ry)× ρζ

}
, where now

ρζ := n−1
ζ

∑
ζjρj is the arithmetic mean of relative Pareto weights. Using the assumption y ⊥ ζ,

we can then rewrite it as

Es

{
ζiϕζ exp

(
−rµζ

)
exp

(
γ
σ2
ζ

nζ

)
× ρζ

}
.
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Appendix G. Walrasian Equilibrium without Transfers

Following the definitions in Subsection E, and given a (normalized) price function r ∈ ∆ (S), we
can simplify the consumer’s problem by just choosing consumption to maximize utility, given only
one “expected” budget constraint. Formally, agent i ∈ {1, . . . , n} solves

(G.1) Vi (q) := maxEs {ζiui [ci (s)] + (1− ζi)ui (yi)}

subject to: Es [ζici (s) r (s)] ≤ Es [ζiyir (s)] .

As we did when defining the Lagrange multipliers for the planning problem, we normalize the
price function as q (s) P (s) = q̂ (s), where q̂ is the actual price measure. A Walrasian equilibrium
is a pair (c, q) =

(
{ci (s)}i∈I,s∈S , {q (s)}s∈S

)
such that

• {ci (s)}s∈S solves (G.1) given prices q (s)
• and markets clear at all states:

∑
i ζici (s) ≤

∑
i ζiyi. for all s = (y, ζ).

Proposition 5.1 implies there exists a vector λ such that the equilibrium allocation solves the
planning problem (3.2), and such that the normalized prices satisfy r (s) = q (s), where q (s)
are the normalized Lagrange multipliers of the resource constraint at state s. Following Negishi
(1960) and more recently Echenique and Wierman (2012), we can then solve for the equilibrium
allocation by finding the Pareto weights that satisfy the budget constraints for all agents. Formally,
let c∗i (s | λ) be the optimal consumption allocation in the planning problem with weights λ, and
q∗ (s | λ) the Lagrange multipliers (normalized by the probabilities of each state). Then, a Pareto
weight vector λ corresponds to a Walrasian equilibrium allocation if and only if

(G.2) Es [ζic∗i (s | λ) q∗ (s | λ)] = Eζ [ζiyiq∗ (s | λ)] for all i = 1, 2 . . . , n.

The next proposition characterizes the Pareto weights equation for the CARA-Normal case.

Proposition G.1. Suppose ui (c) = −r−1
i exp (−ric) and y ∼ N (µ,Σ). Let rζ :=

(
1
nζ

∑
ζir
−1
i

)−1

be the harmonic mean of risk aversion in market ζ, and λζ := exp
[

1
nζ

∑
i ζi (rζ/ri) ln (λi)

]
be the

average Pareto weight in the market, weighted by the relative risk aversion. Also, let Σi,ζ :=
∑
j ζjσij

Then the Pareto weight vector λ solving (G.2) satisfies

(G.3) ln (λi) =
Eζ
{
ζi
[
ln
(
λζ
)

+
(
riµi − rζµζ

)
− rζ

nζ

(
riΣi,ζ − rζσ2

ζ

)]
η (s)

}
Eζ {ζiη (s)}

for i = 1, . . . , n, where η (s) := λζ exp
(
−rζµζ + r2

ζ

2
σ2
ζ

nζ

)
.

Proof. From the first order conditions under CARA preferences, we get

(G.4) λi exp (−rici) = q (s) ⇐⇒ ci = 1
ri

ln (λi)−
1
ri

ln (q (s))

and that
q (s) = λζ exp (−rζy) = λζ exp (−rζy) .
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Using the first order conditions again, whenever ζi = 1 we get

(G.5) ci (s) =
ln
(
λi/λζ

)
ri

+ rζ
ri
y (s) .

Then, the value of the consumption allocation, at prices q (s) is

Es {ζic (s) q (s)} = Es
[
ζi

ln (λi)
ri

q (s)
]
− Es

ζi ln
(
λζ
)

ri
q (s)

+ Es
{
ζi
rζ
ri
y (s) q (s)

}

= 1
ri

ln (λi)FCi (λ)− 1
ri
Es
{
ζiλζ

[
ln
(
λζ
)

+ rζy
]

exp (−rζy)
}

where Ey (−rζy) = exp
(
−rζµζ + rζ

2
σζ
nζ

)
as we have seen before. Moreover

Es [rζy exp (−rζy)] = Eζ

[(
rζµζ −

r2
ζ

nζ
σ2
ζ

)
exp

(
−rζµζ +

r2
ζ

2
σ2

nζ

)]
.

On the other hand, the value of agent i’ s income stream is

wi = Eζ [ζiyiq (s)] = Es
{
ζiλζyi exp [−rζy (s)]

}
.

Using the moment generating functionMy (t) = Ey [exp (t′y)] = exp
(
t′µ+ 1

2 t
′Σt
)
, we get E

[
yi exp

(
−rζyζ

)]
=

∂M
∂ti
|
t=−

yζ
nζ
×1

where 1 is a vector of 1’s, so that t′y = rζy. This then implies that Ey [yi exp (−rζy)] =(
µi −

rζ
nζ

Σi,ζ

)
exp

(
−rζµζ + rζ

2nζ σ
2
ζ

)
, where Σi,ζ :=

∑
j ζjσij . Putting all these results together, we

can write the budget constraint as

Es [ζi (ci − yi) q (s)] = 0

if and only if

r−1
i ln (λi)FCi (λ)− r−1

i Eζ

{
ζiλζ

[
ln
(
λζ
)
− rζµζ +

r2
ζ

nζ
σ2
ζ

]
exp

(
−rζµζ +

r2
ζ

2nζ
σ2
ζ

)}

= Eζ

{
ζiλζ

(
µi −

rζ
nζ

Σi,ζ

)
exp

(
−rζµζ +

r2
ζ

2nζ
σ2
ζ

)}
and so

ln (λi)FCi (λ) = Eζ

{
ζiλζ

[
ln
(
λζ
)

+
(
riµi − rζµζ

)
− rζ
nζ

(
riΣi,ζ − r2

ζσ
2
ζ

)]
exp

(
−rζµζ +

r2
ζ

2nζ
σ2
ζ

)}
.

�

Observe that the denominator has Eζ {ζiη (s)} = FCi. Also, because λ ∈ ∆n, we have ln (λi) and
ln
(
λζ
)
< 0, which implies that if we could, somehow, increase FCi without affecting the numerator

of the right hand side of (G.3), we would increase λi in the fixed point equation. An important
corollary of Proposition G.1 is the proof of Proposition A.1, since we would have rζ = ri = r for all
ζ, and the fact that incomes are identically distributed and independent imply σ2

ζ = σ2 , µζ = µ
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and Σi,ζ = σ2. This simplifies the fixed point equation as

ln (λi)FCi (λ) = Eζ

{
ζiλζ ln

(
λζ
)

exp
(
−rµ+ r2

2
σ2

nζ

)}
to which a solution is λi = 1/n. We summarize this result in Proposition G.2.

Proposition G.2. Suppose ui (c) = −r−1 exp (−rc) and yi ∼i.i.d. N
(
µ, σ2). Then λi = 1/n ∀i

solves G.2, and hence FCi (λ) = exp (−rµ)Eζ
{
ζi exp

(
r2

2
σ2

nζ

)}
.

Appendix H. Economy with Portfolio Investments

H.1. Setup. We study the model in Section B.2, in the case with normally distributed returns and
CARA preferences. The timing of the environment is as follows:

(1) Endowment vector is drawn according to e ∼ N (µe,Σe),
(2) Agents choose portfolio investments wi ∈ RK ,
(3) Returns are drawn: R ∼ N (ρ,Λ) and income is determined as yi = ei + w′iR.

We will assume that the realization of the endowment ei is privately observed by agents at the
moment of deciding the investment portfolio wi. We will show that this will not affect the decision;
i.e. ,wi (ei) = wi for all ei ∈ R

To set up the problem, remember that given the efficient Pareto optimal consumption allocation,
agents will consume according to

ci (s) =

ai + ηζ,iyζ if ζi = 1

yi if ζi = 0

where ai := ln
(
λζ/λi

)
/ri and ηi := rζ/ri. To simplify exposition, we will assume that λi = 1 for

all i (this will not change the results in any way, as we will see) so ai = 0 for all i. Also, since
there are no strategic interaction between the agents’ portfolio decisions, the planner would always
choose to maximize ex-post welfare; i.e. for any profile of portfolio decisions w = (w1, . . . , wn).

For a given realization of portfolio returns R, then aggregate tradable income given (ζ,R) is

Y (ζ,R) =
n∑
i=1

ζi (yi + ti) = ηζ
(
eζ + tζ + w′ζR

)
where eζ := n−1

ζ

∑n
i=1 ζiyi, tζ = n−1

ζ

∑n
i=1 ζiti and wζ := n−1

ζ

∑n
i=1 ζiwi respectively. This means

that, conditional on ζi = 1, the first and second moments of individual consumption are:

E (ci | e, ζ) = ηζ,i
(
eζ + tζ + w′ζρ

)
and its variance:

var (ci | e, ζ) = η2
ζ,iw

T
ζ Λwζ

which then means that, conditional on (e, ζ) (with ζi = 1) we have that ci ∼ N
(
ηζ,i

(
eζ + tζ + wTζ ρ

)
, η2
ζ,iw

T
ζ Λwζ

)
.

This then means that expected utility for agent i (conditional on having market access) can be writ-
ten as

E [u (ci) | e, ζ] = −r−1
i exp

(
−riηζ,i

(
eζ + tζ + wTζ ρ

)
+ r2

i

2 η
2
ζ,iw

T
ζ Λwζ

)
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and using the fact that ηζ,i = rζ/ri we can simplify it to

E [u (ci) | e, ζ] = −r−1
i exp

(
−rζ

(
eζ + tζ + wTζ ρ

)
+
r2
ζ

2 w
′
ζΛwζ

)
and if, instead we have ζi = 0, then

E [u (ci) | e, ζ] = −r−1
i exp

(
−ri

(
ei + wTi ρ

)
+ r2

i

2 w
′
iΛwi

)
H.2. Equilibrium. We look for Bayesian Nash equilibria of the simultaneous move game where
agents, taking the investment strategy wj (ej) as given, decide optimally on their portfolio decisions.
Formally, a profile of investment functions wi : R→ RK is a Bayesian Nash Equilibrium (BNE) if,
for all agents and all ei ∈ R we have that

wi (ei) ∈ argmax
wi∈Rk

Ee,R,ζ [ui (ci) | wj (·)]

We get the following result:

Proposition H.1. There exists a BNE of the investment game where wi (ei) = (riΛ)−1 ρ for all ei

Proof. To prove this statement, we first write the first order conditions of the investment problem
for agent i. The agent chooses wi to solve∑

ζ:ζi=1
ζi
∂E [ui (ci) | e, ζ]

∂wi
P (ζ) + (1− pi)

∂E [ui (ci) | e, ζi = 0]
∂wi

= 0

See that
∂E [ui (ci) | e, ζ]

∂wi
= ∂E [u (ci) | e, ζ]

∂wζ
× ∂wζ
∂wi

=

= n−1
ζ

∂E [u (ci) | e, ζ]
∂wζ

and, with some algebra, we can show that
∂E [ui (ci) | e, ζ]

∂wζ
=

= −ηζ,i exp
[
−rζ

(
eζ + tζ + wTζ ρ

)
+
r2
ζ

2 w
′
ζΛwζ

]
× (rζΛwζ − ρ)

Analogously, we can show that

∂E [ui (ci) | e, ζi = 0]
∂wi

= −ηζ,i exp
[
−ri

(
ei + wTi ρ

)
+ r2

i

2 w
′
iΛwi

]
× (riΛwi − ρ)

It is easy to check that if wj = (rjΛ)−1 ρ then wi = (riΛ)−1 ρ maximizes the agents expected
utility, for any realization of e �

H.3. Income correlation Caused by Portfolio Choices. Take the version where e is privately
observed. We can use the above results to show that the resulting income distribution will actually
give positively correlated incomes. The intuitive reason for this is the same as in Jackson and
Pernoud (2019): agents have access to the same set of investment opportunities. Even with het-
erogeneous preferences, they still are risk averse, and therefore their investments will be positively
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correlated, which will be translated into a positive correlation of incomes, even if the underlying
endowment process is not.

For this, we simply take the equilibrium portfolio decision for each agent, which gives that
yi = ei + r−1

i ρ′Λ−1R. This then means that its conditional covariances are

cov (yi, yj | e) = ER
{[
r−1
i ρ′Λ−1 (R− ρ)

]
×
[
r−1
j ρ′Λ−1 (R− ρ)

]}
=

= (rirj)−1 ρ′Λ−1ER
[
(R− ρ) (R− ρ)′

]
Λ−1ρ =

= (rirj)−1 ρ′Λ−1ρ

See that since Λ is positive definite and ri, rj > 0 we have that cov (yi, yj | e) > 0. This result
is independent of the assumption of endowments being independent. since then we can write the
covariance between yi and yj as

cov (yi, yj) = (rirj)−1 ρ′Λ−1ρ+ cov (ei, ej)

so, even if endowments are independent (i.e., cov (ei, ej) = 0 ) then incomes would be correlated
because of their similar portfolio decisions. This is relevant in our model, because we know that
the value of a liquidity injection is increasing in the average cross-correlations of income draws.
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